Dong Yelin, Lengyel Gabor, Shivkumar Sabyasachi, Anzai Akiyuki, DiRisio Grace F, Haefner Ralf M, DeAngelis Gregory C
Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA.
Zuckerman Institute, Columbia University, New York, NY, USA.
bioRxiv. 2025 Mar 7:2024.07.25.605047. doi: 10.1101/2024.07.25.605047.
Elucidating the neural basis of perceptual biases, such as those produced by visual illusions, can provide powerful insights into the neural mechanisms of perceptual inference. However, studying the subjective percepts of animals poses a fundamental challenge: unlike human participants, animals cannot be verbally instructed to report what they see, hear, or feel. Instead, they must be trained to perform a task for reward, and researchers must infer from their responses what the animal perceived. However, animals' responses are shaped by reward feedback, thus raising the major concern that the reward regimen may alter the animal's decision strategy or even their intrinsic perceptual biases. Using simulations of a reinforcement learning agent, we demonstrate that conventional reward strategies fail to allow accurate estimation of perceptual biases. We developed a method that estimates perceptual bias during task performance and then computes the reward for each trial based on the evolving estimate of the animal's perceptual bias. Our approach makes use of multiple stimulus contexts to dissociate perceptual biases from decision-related biases. Starting with an informative prior, our Bayesian method updates a posterior over the perceptual bias after each trial. The prior can be specified based on data from past sessions, thus reducing the variability of the online estimates and allowing it to converge to a stable estimate over a small number of trials. After validating our method on synthetic data, we apply it to estimate perceptual biases of monkeys in a motion direction discrimination task in which varying background optic flow induces robust perceptual biases. This method overcomes an important challenge to understanding the neural basis of subjective percepts.
阐明诸如视觉错觉所产生的感知偏差的神经基础,能够为感知推理的神经机制提供有力的见解。然而,研究动物的主观感知带来了一个根本性的挑战:与人类参与者不同,无法通过言语指示动物报告它们所看到、听到或感觉到的东西。相反,必须训练它们执行任务以获取奖励,并且研究人员必须从它们的反应中推断动物所感知到的内容。然而,动物的反应受到奖励反馈的影响,因此引发了一个主要担忧,即奖励机制可能会改变动物的决策策略,甚至改变它们内在的感知偏差。通过对强化学习智能体的模拟,我们证明传统的奖励策略无法准确估计感知偏差。我们开发了一种方法,在任务执行过程中估计感知偏差,然后根据对动物感知偏差的不断演变的估计来计算每次试验的奖励。我们的方法利用多种刺激情境将感知偏差与决策相关偏差区分开来。从一个信息丰富的先验开始,我们的贝叶斯方法在每次试验后更新关于感知偏差的后验。先验可以根据过去实验的数据来指定,从而减少在线估计的变异性,并使其在少数试验中收敛到一个稳定的估计。在对合成数据验证了我们的方法之后,我们将其应用于估计猴子在运动方向辨别任务中的感知偏差,在该任务中,变化的背景光流会引发强烈的感知偏差。这种方法克服了理解主观感知神经基础的一个重要挑战。