Titcomb Georgia, Allan Brian F, Ainsworth Tyler, Henson Lauren, Hedlund Tyler, Pringle Robert M, Palmer Todd M, Njoroge Laban, Campana Michael G, Fleischer Robert C, Mantas John Naisikie, Young Hillary S
Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
Mpala Research Centre, Box 555, Nanyuki, Kenya.
Proc Biol Sci. 2017 Sep 13;284(1862). doi: 10.1098/rspb.2017.0475.
Both large-wildlife loss and climatic changes can independently influence the prevalence and distribution of zoonotic disease. Given growing evidence that wildlife loss often has stronger community-level effects in low-productivity areas, we hypothesized that these perturbations would have interactive effects on disease risk. We experimentally tested this hypothesis by measuring tick abundance and the prevalence of tick-borne pathogens ( and spp) within long-term, size-selective, large-herbivore exclosures replicated across a precipitation gradient in East Africa. Total wildlife exclusion increased total tick abundance by 130% (mesic sites) to 225% (dry, low-productivity sites), demonstrating a significant interaction of defaunation and aridity on tick abundance. When differing degrees of exclusion were tested for a subset of months, total tick abundance increased from 170% (only mega-herbivores excluded) to 360% (all large wildlife excluded). Wildlife exclusion differentially affected the abundance of the three dominant tick species, and this effect varied strongly over time, likely due to differences among species in their host associations, seasonality, and other ecological characteristics. Pathogen prevalence did not differ across wildlife exclusion treatments, rainfall levels, or tick species, suggesting that exposure risk will respond to defaunation and climate change in proportion to total tick abundance. These findings demonstrate interacting effects of defaunation and aridity that increase disease risk, and they highlight the need to incorporate ecological context when predicting effects of wildlife loss on zoonotic disease dynamics.
大型野生动物数量减少和气候变化都会独立影响人畜共患病的流行程度和分布。鉴于越来越多的证据表明,野生动物数量减少在低生产力地区往往具有更强的群落水平影响,我们推测这些干扰因素会对疾病风险产生交互作用。我们通过测量蜱虫数量以及蜱传病原体(和 属物种)的流行率,在东非沿降水梯度重复设置的长期、大小选择性大型食草动物围栏内,对这一假设进行了实验测试。完全排除野生动物使蜱虫总数增加了130%(中等湿度地区)至225%(干燥、低生产力地区),这表明动物群落减少和干旱对蜱虫数量具有显著的交互作用。在部分月份对不同程度的排除情况进行测试时,蜱虫总数从170%(仅排除大型食草动物)增加到360%(所有大型野生动物均被排除)。排除野生动物对三种主要蜱虫物种的数量有不同影响,且这种影响随时间变化很大,这可能是由于不同物种在宿主关联、季节性和其他生态特征方面存在差异。病原体流行率在不同的野生动物排除处理、降雨水平或蜱虫物种之间没有差异,这表明接触风险将与蜱虫总数成比例地响应动物群落减少和气候变化。这些发现证明了动物群落减少和干旱的交互作用会增加疾病风险,并且强调了在预测野生动物数量减少对人畜共患病动态的影响时纳入生态背景的必要性。