Suppr超能文献

腹部CTA图像上肝脏血管分割的降噪和血管性滤波器的定量评估

Quantitative evaluation of noise reduction and vesselness filters for liver vessel segmentation on abdominal CTA images.

作者信息

Luu Ha Manh, Klink Camiel, Moelker Adriaan, Niessen Wiro, van Walsum Theo

机构信息

Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Dr. Molewaterplein 50/60, Rotterdam, The Netherlands.

出版信息

Phys Med Biol. 2015 May 21;60(10):3905-26. doi: 10.1088/0031-9155/60/10/3905. Epub 2015 Apr 24.

Abstract

Liver vessel segmentation in CTA images is a challenging task, especially in the case of noisy images. This paper investigates whether pre-filtering improves liver vessel segmentation in 3D CTA images. We introduce a quantitative evaluation of several well-known filters based on a proposed liver vessel segmentation method on CTA images. We compare the effect of different diffusion techniques i.e. Regularized Perona-Malik, Hybrid Diffusion with Continuous Switch and Vessel Enhancing Diffusion as well as the vesselness approaches proposed by Sato, Frangi and Erdt. Liver vessel segmentation of the pre-processed images is performed using a histogram-based region grown with local maxima as seed points. Quantitative measurements (sensitivity, specificity and accuracy) are determined based on manual landmarks inside and outside the vessels, followed by T-tests for statistic comparisons on 51 clinical CTA images. The evaluation demonstrates that all the filters make liver vessel segmentation have a significantly higher accuracy than without using a filter (p  <  0.05); Hybrid Diffusion with Continuous Switch achieves the best performance. Compared to the diffusion filters, vesselness filters have a greater sensitivity but less specificity. In addition, the proposed liver vessel segmentation method with pre-filtering is shown to perform robustly on a clinical dataset having a low contrast-to-noise of up to 3 (dB). The results indicate that the pre-filtering step significantly improves liver vessel segmentation on 3D CTA images.

摘要

在CTA图像中进行肝脏血管分割是一项具有挑战性的任务,尤其是在图像存在噪声的情况下。本文研究了预滤波是否能改善三维CTA图像中的肝脏血管分割。我们基于一种提出的CTA图像肝脏血管分割方法,对几种著名的滤波器进行了定量评估。我们比较了不同扩散技术的效果,即正则化的Perona-Malik、带连续切换的混合扩散和血管增强扩散,以及Sato、Frangi和Erdt提出的血管性方法。使用以局部最大值为种子点的基于直方图的区域生长法对预处理后的图像进行肝脏血管分割。基于血管内外的手动标记点确定定量测量值(灵敏度、特异性和准确性),随后对51幅临床CTA图像进行T检验以进行统计比较。评估表明,所有滤波器都使肝脏血管分割的准确性显著高于不使用滤波器的情况(p < 0.05);带连续切换的混合扩散表现最佳。与扩散滤波器相比,血管性滤波器具有更高的灵敏度但特异性较低。此外,所提出的带预滤波的肝脏血管分割方法在对比度噪声比低至3(dB)的临床数据集上表现稳健。结果表明,预滤波步骤显著改善了三维CTA图像中的肝脏血管分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验