Advanced Wave Sensors S. L., Algepser 24, 46988 Paterna, Spain.
Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Camí de Vera S/N, 46022 Valencia, Spain.
Sensors (Basel). 2017 Sep 8;17(9):2057. doi: 10.3390/s17092057.
Acoustic wave resonators have become suitable devices for a broad range of sensing applications due to their sensitivity, low cost, and integration capability, which are all factors that meet the requirements for the resonators to be used as sensing elements for portable point of care (PoC) platforms. In this work, the design, characterization, and validation of a 150 MHz high fundamental frequency quartz crystal microbalance (HFF-QCM) sensor for bio-sensing applications are introduced. Finite element method (FEM) simulations of the proposed design are in good agreement with the electrical characterization of the manufactured resonators. The sensor is also validated for bio-sensing applications. For this purpose, a specific sensor cell was designed and manufactured that addresses the critical requirements associated with this type of sensor and application. Due to the small sensing area and the sensor's fragility, these requirements include a low-volume flow chamber in the nanoliter range, and a system approach that provides the appropriate pressure control for assuring liquid confinement while maintaining the integrity of the sensor with a good base line stability and easy sensor replacement. The sensor characteristics make it suitable for consideration as the elemental part of a sensor matrix in a multichannel platform for point of care applications.
声波谐振器由于其灵敏度、低成本和集成能力而成为各种传感应用的理想器件,这些都是满足谐振器用作便携式即时检测 (PoC) 平台传感元件要求的因素。在这项工作中,介绍了用于生物传感应用的 150 MHz 高基频石英晶体微天平 (HFF-QCM) 传感器的设计、特性和验证。所提出设计的有限元方法 (FEM) 模拟与制造谐振器的电特性非常吻合。该传感器还经过了生物传感应用的验证。为此,设计并制造了一个特定的传感器单元,该单元解决了与这种类型的传感器和应用相关的关键要求。由于传感面积小和传感器易碎,这些要求包括在纳升级范围内的小体积流量腔室,以及提供适当压力控制的系统方法,以确保在保持传感器完整性的同时液体限制,同时具有良好的基线稳定性和易于更换传感器。该传感器特性使其适合作为用于即时检测应用的多通道平台中传感器矩阵的基本部分。