Departments of Physics and Applied Physics, Yale University, New Haven, 06520, Connecticut, USA.
Yale Quantum Institute, Yale University, New Haven, 06520, Connecticut, USA.
Sci Rep. 2017 Sep 8;7(1):11003. doi: 10.1038/s41598-017-11266-1.
Neural networks can efficiently encode the probability distribution of errors in an error correcting code. Moreover, these distributions can be conditioned on the syndromes of the corresponding errors. This paves a path forward for a decoder that employs a neural network to calculate the conditional distribution, then sample from the distribution - the sample will be the predicted error for the given syndrome. We present an implementation of such an algorithm that can be applied to any stabilizer code. Testing it on the toric code, it has higher threshold than a number of known decoders thanks to naturally finding the most probable error and accounting for correlations between errors.
神经网络可以有效地对纠错码中的错误概率分布进行编码。此外,这些分布可以根据相应错误的伴随式进行条件化。这为解码器铺平了道路,解码器可以使用神经网络计算条件分布,然后从分布中进行采样 - 采样结果将是给定伴随式的预测错误。我们提出了一种可以应用于任何稳定子码的这种算法的实现。在 toric 码上进行测试时,它的阈值高于许多已知的解码器,这要归功于它能够自然地找到最可能的错误,并考虑错误之间的相关性。