Suppr超能文献

设计可竞争能力:交互设计、机器学习与心理健康

Designing Contestability: Interaction Design, Machine Learning, and Mental Health.

作者信息

Hirsch Tad, Merced Kritzia, Narayanan Shrikanth, Imel Zac E, Atkins David C

机构信息

University of Washington, Seattle, USA,

University of Utah, Salt Lake City, USA,

出版信息

DIS (Des Interact Syst Conf). 2017 Jun;2017:95-99. doi: 10.1145/3064663.3064703.

Abstract

We describe the design of an automated assessment and training tool for psychotherapists to illustrate challenges with creating interactive machine learning (ML) systems, particularly in contexts where human life, livelihood, and wellbeing are at stake. We explore how existing theories of interaction design and machine learning apply to the psychotherapy context, and identify "contestability" as a new principle for designing systems that evaluate human behavior. Finally, we offer several strategies for making ML systems more accountable to human actors.

摘要

我们描述了一种面向心理治疗师的自动化评估与训练工具的设计,以说明创建交互式机器学习(ML)系统所面临的挑战,尤其是在人类生命、生计和幸福受到威胁的情况下。我们探讨了现有的交互设计和机器学习理论如何应用于心理治疗背景,并将“可争议性”确定为设计评估人类行为系统的一项新原则。最后,我们提供了几种使机器学习系统对人类行为者更具可问责性的策略。

相似文献

9
Designing Guiding Systems for Brain-Computer Interfaces.设计脑机接口的引导系统。
Front Hum Neurosci. 2017 Jul 31;11:396. doi: 10.3389/fnhum.2017.00396. eCollection 2017.

引用本文的文献

本文引用的文献

4
Expertise in psychotherapy: an elusive goal?心理治疗专长:难以企及的目标?
Am Psychol. 2014 Apr;69(3):218-29. doi: 10.1037/a0035099. Epub 2014 Jan 6.
6
Ten things that motivational interviewing is not.动机性访谈不是的十件事。
Behav Cogn Psychother. 2009 Mar;37(2):129-40. doi: 10.1017/S1352465809005128.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验