Department of Chemistry, University of Connecticut, Storrs, CT, USA.
Department of Biomedical and Chemical Engineering, Syracuse University, NY, USA.
FEBS J. 2017 Nov;284(21):3662-3683. doi: 10.1111/febs.14263. Epub 2017 Sep 30.
Host-defense peptides (HDPs) feature evolution-tested potency against life-threatening pathogens. While piscidin 1 (p1) and piscidin 3 (p3) are homologous and potent fish HDPs, only p1 is strongly membranolytic. Here, we hypothesize that another mechanism imparts p3 strong potency. We demonstrate that the N-termini of both peptides coordinate Cu and p3-Cu cleaves isolated DNA at a rate on par with free Cu but significantly faster than p1-Cu. On planktonic bacteria, p1 is more antimicrobial but only p3 features copper-dependent DNA cleavage. On biofilms and persister cells, p3-Cu is more active than p1-Cu, commensurate with stronger peptide-induced DNA damage. Molecular dynamics and NMR show that more DNA-peptide interactions exist with p3 than p1, and the peptides adopt conformations simultaneously poised for metal- and DNA-binding. These results generate several important conclusions. First, homologous HDPs cannot be assumed to have identical mechanisms since p1 and p3 eradicate bacteria through distinct relative contributions of membrane and DNA-disruptive effects. Second, the nuclease and membrane activities of p1 and p3 show that naturally occurring HDPs can inflict not only physicochemical but also covalent damage. Third, strong nuclease activity is essential for biofilm and persister cell eradication, as shown by p3, the homolog more specific toward bacteria and more expressed in vascularized tissues. Fourth, p3 combines several physicochemical properties (e.g., Amino Terminal Copper and Nickel binding motif; numerous arginines; moderate hydrophobicity) that confer low membranolytic effects, robust copper-scavenging capability, strong interactions with DNA, and fast nuclease activity. This new knowledge could help design novel therapeutics active against hard-to-treat persister cells and biofilms.
宿主防御肽 (HDPs) 具有针对危及生命的病原体的经过进化测试的效力。虽然鱼精蛋白 1 (p1) 和鱼精蛋白 3 (p3) 是同源且有效的鱼类 HDPs,但只有 p1 具有强烈的膜溶解作用。在这里,我们假设另一种机制赋予了 p3 强大的效力。我们证明了两种肽的 N 端都协调 Cu,并且 p3-Cu 以与游离 Cu 相当的速度但明显快于 p1-Cu 切割分离的 DNA。在浮游细菌上,p1 更具抗菌性,但只有 p3 具有铜依赖性 DNA 切割。在生物膜和持久细胞上,p3-Cu 比 p1-Cu 更活跃,与更强的肽诱导 DNA 损伤相一致。分子动力学和 NMR 表明,p3 与 p1 相比存在更多的 DNA-肽相互作用,并且这些肽同时采用适合金属和 DNA 结合的构象。这些结果得出了几个重要的结论。首先,不能假设同源 HDPs 具有相同的机制,因为 p1 和 p3 通过膜和 DNA 破坏作用的相对贡献来消灭细菌。其次,p1 和 p3 的核酸酶和膜活性表明,天然存在的 HDPs 不仅可以造成物理化学损伤,还可以造成共价损伤。第三,正如 p3 所证明的那样,强核酸酶活性对于消灭生物膜和持久细胞是必不可少的,p3 对细菌更具特异性,在血管化组织中表达更丰富。第四,p3 结合了几种物理化学特性(例如,Amino Terminal Copper 和 Nickel 结合基序;许多精氨酸;适度的疏水性),这些特性赋予了低膜溶解作用、强大的铜清除能力、与 DNA 的强相互作用和快速的核酸酶活性。这种新知识可以帮助设计针对难以治疗的持久细胞和生物膜的新型治疗药物。