Shine James M, Kucyi Aaron, Foster Brett L, Bickel Stephan, Wang Danhong, Liu Hesheng, Poldrack Russell A, Hsieh Liang-Tien, Hsiang Jen Chun, Parvizi Josef
Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94301.
Department of Psychology, Stanford University, Stanford, California 94301.
J Neurosci. 2017 Oct 4;37(40):9667-9674. doi: 10.1523/JNEUROSCI.1574-17.2017. Epub 2017 Sep 11.
To determine the spatiotemporal relationships among intrinsic networks of the human brain, we recruited seven neurosurgical patients (four males and three females) who were implanted with intracranial depth electrodes. We first identified canonical resting-state networks at the individual subject level using an iterative matching procedure on each subject's resting-state fMRI data. We then introduced single electrical pulses to fMRI pre-identified nodes of the default network (DN), frontoparietal network (FPN), and salience network (SN) while recording evoked responses in other recording sites within the same networks. We found bidirectional signal flow across the three networks, albeit with distinct patterns of evoked responses within different time windows. We used a data-driven clustering approach to show that stimulation of the FPN and SN evoked a rapid (<70 ms) response that was predominantly higher within the SN sites, whereas stimulation of the DN led to sustained responses in later time windows (85-200 ms). Stimulations in the medial temporal lobe components of the DN evoked relatively late effects (>130 ms) in other nodes of the DN, as well as FPN and SN. Our results provide temporal information about the patterns of signal flow between intrinsic networks that provide insights into the spatiotemporal dynamics that are likely to constrain the architecture of the brain networks supporting human cognition and behavior. Despite great progress in the functional neuroimaging of the human brain, we still do not know the precise set of rules that define the patterns of temporal organization between large-scale networks of the brain. In this study, we stimulated and then recorded electrical evoked potentials within and between three large-scale networks of the brain, the default network (DN), frontoparietal network (FPN), and salience network (SN), in seven subjects undergoing invasive neurosurgery. Using a data-driven clustering approach, we observed distinct temporal and directional patterns between the three networks, with FPN and SN activity predominant in early windows and DN stimulation affecting the network in later windows. These results provide important temporal information about the interactions between brain networks supporting human cognition and behavior.
为了确定人类大脑内在网络之间的时空关系,我们招募了7名植入颅内深度电极的神经外科患者(4名男性和3名女性)。我们首先在个体水平上,使用迭代匹配程序对每个受试者的静息态功能磁共振成像(fMRI)数据识别典型的静息态网络。然后,我们向fMRI预先确定的默认网络(DN)、额顶网络(FPN)和突显网络(SN)的节点施加单个电脉冲,同时记录同一网络内其他记录位点的诱发反应。我们发现三个网络间存在双向信号流,尽管在不同时间窗口内诱发反应模式不同。我们使用数据驱动的聚类方法表明,刺激FPN和SN会诱发快速(<70毫秒)反应,该反应在SN位点内主要更高,而刺激DN会在较晚时间窗口(85 - 200毫秒)导致持续反应。DN内侧颞叶成分的刺激在DN、FPN和SN的其他节点中诱发相对较晚的效应(>130毫秒)。我们的结果提供了关于内在网络间信号流模式的时间信息,有助于深入了解可能限制支持人类认知和行为的脑网络结构的时空动态。尽管人类大脑功能神经成像取得了巨大进展,但我们仍然不知道定义大脑大规模网络间时间组织模式的确切规则集。在本研究中,我们在7名接受侵入性神经外科手术的受试者中,刺激并记录了大脑三个大规模网络(默认网络(DN)、额顶网络(FPN)和突显网络(SN))内部及之间的电诱发电位。使用数据驱动的聚类方法,我们观察到三个网络之间存在明显的时间和方向模式,FPN和SN活动在早期窗口占主导,而DN刺激在后期窗口影响网络。这些结果提供了关于支持人类认知和行为的脑网络间相互作用的重要时间信息。