Sci Rep. 2017 Sep 11;7(1):11185. doi: 10.1038/s41598-017-11554-w.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides quantitative metrics (e.g. K, v) via pharmacokinetic models. We tested inter-algorithm variability in these quantitative metrics with 11 published DCE-MRI algorithms, all implementing Tofts-Kermode or extended Tofts pharmacokinetic models. Digital reference objects (DROs) with known K and v values were used to assess performance at varying noise levels. Additionally, DCE-MRI data from 15 head and neck squamous cell carcinoma patients over 3 time-points during chemoradiotherapy were used to ascertain K and v kinetic trends across algorithms. Algorithms performed well (less than 3% average error) when no noise was present in the DRO. With noise, 87% of K and 84% of v algorithm-DRO combinations were generally in the correct order. Low Krippendorff's alpha values showed that algorithms could not consistently classify patients as above or below the median for a given algorithm at each time point or for differences in values between time points. A majority of the algorithms produced a significant Spearman correlation in v of the primary gross tumor volume with time. Algorithmic differences in K and v values over time indicate limitations in combining/comparing data from distinct DCE-MRI model implementations. Careful cross-algorithm quality-assurance must be utilized as DCE-MRI results may not be interpretable using differing software.
动态对比增强磁共振成像(DCE-MRI)通过药代动力学模型提供定量指标(例如 K、v)。我们使用 11 种已发表的 DCE-MRI 算法测试了这些定量指标的算法间可变性,所有算法都实现了 Tofts-Kermode 或扩展 Tofts 药代动力学模型。使用具有已知 K 和 v 值的数字参考对象(DRO)来评估在不同噪声水平下的性能。此外,还使用了 15 名头颈部鳞状细胞癌患者在放化疗期间的 3 个时间点的 DCE-MRI 数据,以确定不同算法下 K 和 v 动力学趋势。当 DRO 中不存在噪声时,算法的性能表现良好(平均误差小于 3%)。存在噪声时,87%的 K 和 84%的 v 算法-DRO 组合通常处于正确的顺序。Krippendorff's alpha 值较低表明,在每个时间点,算法无法一致地将患者分类为给定算法的中位数以上或以下,或者在不同时间点之间的差异也无法一致分类。大多数算法在原发性大体肿瘤体积 v 随时间的变化上产生了显著的 Spearman 相关性。K 和 v 值随时间的算法差异表明,在不同的 DCE-MRI 模型实现中组合/比较数据存在局限性。由于使用不同的软件可能无法解释 DCE-MRI 结果,因此必须仔细进行跨算法质量保证。