Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, 5000, Córdoba, Argentina; Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile.
Semin Cell Dev Biol. 2018 Aug;80:43-49. doi: 10.1016/j.semcdb.2017.09.012. Epub 2017 Sep 9.
Historically, ROS have been considered toxic molecules, especially when their intracellular concentration reaches high values. However, physiological levels of ROS support crucial cellular processes, acting as second messengers able to regulate intrinsic signaling pathways. Specifically, both the central and peripheral nervous systems are especially susceptible to changes in the redox state, developing either a defense or adaptive response depending on the concentration, source and duration of the pro-oxidative stimuli. In this review, we summarize classical and modern concepts regarding ROS physiology, with an emphasis on the role of the NADPH oxidase (NOX) complex, the main enzymatic and regulated source of ROS in the nervous system. We discuss how ROS and redox state contribute to neurogenesis, polarization and maturation of neurons, providing a context for the spatio-temporal conditions in which ROS modulate neural fate, discriminating between "oxidative distress", and "oxidative eustress". Finally, we present a brief discussion about the "physiological range of ROS concentration", and suggest that these values depend on several parameters, including cell type, developmental stage, and the source and type of pro-oxidative molecule.
从历史上看,ROS 一直被认为是有毒分子,尤其是当它们的细胞内浓度达到高值时。然而,ROS 的生理水平支持关键的细胞过程,作为能够调节内在信号通路的第二信使。具体来说,中枢和周围神经系统特别容易受到氧化还原状态变化的影响,根据促氧化刺激的浓度、来源和持续时间,发展出防御或适应反应。在这篇综述中,我们总结了 ROS 生理学的经典和现代概念,重点介绍 NADPH 氧化酶 (NOX) 复合物的作用,这是神经系统中 ROS 的主要酶促和调节来源。我们讨论了 ROS 和氧化还原状态如何促进神经元的发生、极化和成熟,为 ROS 调节神经命运的时空条件提供了背景,区分了“氧化应激”和“氧化适应”。最后,我们简要讨论了“ROS 浓度的生理范围”,并提出这些值取决于几个参数,包括细胞类型、发育阶段以及促氧化分子的来源和类型。