School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
Department of Veterinary Pathology, Texas A&M University, College station, TX, USA.
Sci Rep. 2017 Sep 12;7(1):11356. doi: 10.1038/s41598-017-10132-4.
Proteomics studies of fungal systems have progressed dramatically based on the availability of more fungal genome sequences in recent years. Different proteomics strategies have been applied toward characterization of fungal proteome and revealed important gene functions and proteome dynamics. Presented here is the application of shot-gun proteomic technology to study the bio-remediation of environmental hazards by white-rot fungus. Lignin, a naturally abundant component of the plant biomass, is discovered to promote the degradation of Azo dye by white-rot fungus Irpex lacteus CD2 in the lignin/dye/fungus system. Shotgun proteomics technique was used to understand degradation mechanism at the protein level for the lignin/dye/fungus system. Our proteomics study can identify about two thousand proteins (one third of the predicted white-rot fungal proteome) in a single experiment, as one of the most powerful proteomics platforms to study the fungal system to date. The study shows a significant enrichment of oxidoreduction functional category under the dye/lignin combined treatment. An in vitro validation is performed and supports our hypothesis that the synergy of Fenton reaction and manganese peroxidase might play an important role in DR5B dye degradation. The results could guide the development of effective bioremediation strategies and efficient lignocellulosic biomass conversion.
近年来,随着更多真菌基因组序列的出现,真菌系统的蛋白质组学研究取得了显著进展。不同的蛋白质组学策略已被应用于真菌蛋白质组的描述,揭示了重要的基因功能和蛋白质组动力学。本文介绍了 shotgun 蛋白质组学技术在研究白腐真菌对环境危害的生物修复中的应用。木质素是植物生物质中天然丰富的成分,研究发现它能促进白腐菌 Irpex lacteus CD2 对偶氮染料的降解。shotgun 蛋白质组学技术用于在蛋白质水平上理解木质素/染料/真菌系统的降解机制。我们的蛋白质组学研究可以在单个实验中鉴定大约 2000 种蛋白质(占预测的白腐真菌蛋白质组的三分之一),这是迄今为止研究真菌系统最强大的蛋白质组学平台之一。该研究表明,在染料/木质素联合处理下,氧化还原功能类别显著富集。进行了体外验证,支持了我们的假设,即芬顿反应和锰过氧化物酶的协同作用可能在 DR5B 染料降解中发挥重要作用。研究结果可以为有效的生物修复策略和高效的木质纤维素生物质转化提供指导。