Kijpornyongpan Teeratas, Schwartz Alexa, Yaguchi Allison, Salvachúa Davinia
Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
Advanced Energy Systems Graduate Program, Colorado School of Mines, Golden, CO 80401, USA.
iScience. 2022 Jun 18;25(7):104640. doi: 10.1016/j.isci.2022.104640. eCollection 2022 Jul 15.
Plant-derived biomass is the most abundant biogenic carbon source on Earth. Despite this, only a small clade of organisms known as white-rot fungi (WRF) can efficiently break down both the polysaccharide and lignin components of plant cell walls. This unique ability imparts a key role for WRF in global carbon cycling and highlights their potential utilization in diverse biotechnological applications. To date, research on WRF has primarily focused on their extracellular 'digestive enzymes' whereas knowledge of their intracellular metabolism remains underexplored. Systems biology is a powerful approach to elucidate biological processes in numerous organisms, including WRF. Thus, here we review systems biology methods applied to WRF to date, highlight observations related to their intracellular metabolism, and conduct comparative extracellular proteomic analyses to establish further correlations between WRF species, enzymes, and cultivation conditions. Lastly, we discuss biotechnological opportunities of WRF as well as challenges and future research directions.
植物衍生的生物质是地球上最丰富的生物碳源。尽管如此,只有一小类被称为白腐真菌(WRF)的生物体能够有效分解植物细胞壁的多糖和木质素成分。这种独特的能力赋予了白腐真菌在全球碳循环中的关键作用,并突出了它们在各种生物技术应用中的潜在用途。迄今为止,对白腐真菌的研究主要集中在其细胞外“消化酶”上,而对其细胞内代谢的了解仍未得到充分探索。系统生物学是阐明包括白腐真菌在内的众多生物体中生物过程的有力方法。因此,在这里我们回顾了迄今为止应用于白腐真菌的系统生物学方法,强调与其细胞内代谢相关的观察结果,并进行比较细胞外蛋白质组分析,以进一步建立白腐真菌物种、酶和培养条件之间的相关性。最后,我们讨论了白腐真菌的生物技术机遇以及挑战和未来的研究方向。