Backman Lindsey R F, Funk Michael A, Dawson Christopher D, Drennan Catherine L
a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA.
b Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL , USA.
Crit Rev Biochem Mol Biol. 2017 Dec;52(6):674-695. doi: 10.1080/10409238.2017.1373741. Epub 2017 Sep 13.
Glycyl radical enzymes (GREs) are important biological catalysts in both strict and facultative anaerobes, playing key roles both in the human microbiota and in the environment. GREs contain a backbone glycyl radical that is post-translationally installed, enabling radical-based mechanisms. GREs function in several metabolic pathways including mixed acid fermentation, ribonucleotide reduction and the anaerobic breakdown of the nutrient choline and the pollutant toluene. By generating a substrate-based radical species within the active site, GREs enable C-C, C-O and C-N bond breaking and formation steps that are otherwise challenging for nonradical enzymes. Identification of previously unknown family members from genomic data and the determination of structures of well-characterized GREs have expanded the scope of GRE-catalyzed reactions as well as defined key features that enable radical catalysis. Here, we review the structures and mechanisms of characterized GREs, classifying members into five categories. We consider the open questions about each of the five GRE classes and evaluate the tools available to interrogate uncharacterized GREs.
甘氨酰自由基酶(GREs)是严格厌氧菌和兼性厌氧菌中重要的生物催化剂,在人类微生物群和环境中都发挥着关键作用。GREs含有一个翻译后安装的主链甘氨酰自由基,从而实现基于自由基的机制。GREs在多种代谢途径中发挥作用,包括混合酸发酵、核糖核苷酸还原以及营养物质胆碱和污染物甲苯的厌氧分解。通过在活性位点内产生基于底物的自由基物种,GREs能够实现碳-碳、碳-氧和碳-氮键的断裂和形成步骤,而这些步骤对于非自由基酶来说具有挑战性。从基因组数据中鉴定出以前未知的家族成员以及确定特征明确的GREs的结构,扩大了GRE催化反应的范围,并定义了实现自由基催化的关键特征。在这里,我们综述了已表征的GREs的结构和机制,将成员分为五类。我们考虑了关于这五类GREs中每一类的未解决问题,并评估了用于研究未表征GREs的可用工具。