Suppr超能文献

甘氨酰自由基酶家族的新特性

New tricks for the glycyl radical enzyme family.

作者信息

Backman Lindsey R F, Funk Michael A, Dawson Christopher D, Drennan Catherine L

机构信息

a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA.

b Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL , USA.

出版信息

Crit Rev Biochem Mol Biol. 2017 Dec;52(6):674-695. doi: 10.1080/10409238.2017.1373741. Epub 2017 Sep 13.

Abstract

Glycyl radical enzymes (GREs) are important biological catalysts in both strict and facultative anaerobes, playing key roles both in the human microbiota and in the environment. GREs contain a backbone glycyl radical that is post-translationally installed, enabling radical-based mechanisms. GREs function in several metabolic pathways including mixed acid fermentation, ribonucleotide reduction and the anaerobic breakdown of the nutrient choline and the pollutant toluene. By generating a substrate-based radical species within the active site, GREs enable C-C, C-O and C-N bond breaking and formation steps that are otherwise challenging for nonradical enzymes. Identification of previously unknown family members from genomic data and the determination of structures of well-characterized GREs have expanded the scope of GRE-catalyzed reactions as well as defined key features that enable radical catalysis. Here, we review the structures and mechanisms of characterized GREs, classifying members into five categories. We consider the open questions about each of the five GRE classes and evaluate the tools available to interrogate uncharacterized GREs.

摘要

甘氨酰自由基酶(GREs)是严格厌氧菌和兼性厌氧菌中重要的生物催化剂,在人类微生物群和环境中都发挥着关键作用。GREs含有一个翻译后安装的主链甘氨酰自由基,从而实现基于自由基的机制。GREs在多种代谢途径中发挥作用,包括混合酸发酵、核糖核苷酸还原以及营养物质胆碱和污染物甲苯的厌氧分解。通过在活性位点内产生基于底物的自由基物种,GREs能够实现碳-碳、碳-氧和碳-氮键的断裂和形成步骤,而这些步骤对于非自由基酶来说具有挑战性。从基因组数据中鉴定出以前未知的家族成员以及确定特征明确的GREs的结构,扩大了GRE催化反应的范围,并定义了实现自由基催化的关键特征。在这里,我们综述了已表征的GREs的结构和机制,将成员分为五类。我们考虑了关于这五类GREs中每一类的未解决问题,并评估了用于研究未表征GREs的可用工具。

相似文献

1
New tricks for the glycyl radical enzyme family.
Crit Rev Biochem Mol Biol. 2017 Dec;52(6):674-695. doi: 10.1080/10409238.2017.1373741. Epub 2017 Sep 13.
2
A stable organic free radical in anaerobic benzylsuccinate synthase of Azoarcus sp. strain T.
J Biol Chem. 2001 Apr 20;276(16):12924-7. doi: 10.1074/jbc.M009453200. Epub 2001 Jan 30.
3
New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria.
Biol Chem. 2005 Oct;386(10):981-8. doi: 10.1515/BC.2005.114.
4
The Autonomous Glycyl Radical Protein GrcA Restores Activity to Inactive Full-Length Pyruvate Formate-Lyase .
J Bacteriol. 2022 May 17;204(5):e0007022. doi: 10.1128/jb.00070-22. Epub 2022 Apr 4.
5
A glycyl radical site in the crystal structure of a class III ribonucleotide reductase.
Science. 1999 Mar 5;283(5407):1499-504. doi: 10.1126/science.283.5407.1499.
6
Glycyl radical activating enzymes: structure, mechanism, and substrate interactions.
Arch Biochem Biophys. 2014 Mar 15;546:64-71. doi: 10.1016/j.abb.2014.01.020. Epub 2014 Jan 31.
7
Glycyl Radical Enzymes and Sulfonate Metabolism in the Microbiome.
Annu Rev Biochem. 2021 Jun 20;90:817-846. doi: 10.1146/annurev-biochem-080120-024103. Epub 2021 Apr 6.
9
Stable glycyl radical from pyruvate formate-lyase and ribonucleotide reductase (III).
Adv Protein Chem. 2001;58:277-315. doi: 10.1016/s0065-3233(01)58007-9.
10
Glycyl radical enzymes: a conservative structural basis for radicals.
Structure. 1999 Nov 15;7(11):R257-62. doi: 10.1016/s0969-2126(00)80019-2.

引用本文的文献

1
Structural basis for anaerobic alkane activation by a multisubunit glycyl radical enzyme.
Proc Natl Acad Sci U S A. 2025 Aug 12;122(32):e2510389122. doi: 10.1073/pnas.2510389122. Epub 2025 Aug 4.
2
Deciphering the Physiological Responses to the Intake of Plant-Based Meat Analogues: On the Track of Microbiota and Biomarkers in Serum and Urine.
J Agric Food Chem. 2025 Sep 10;73(36):22698-22713. doi: 10.1021/acs.jafc.5c02799. Epub 2025 Jul 17.
3
4
Commensal resilience: ancient ecological lessons for the modern microbiota.
Infect Immun. 2025 Jun 10;93(6):e0050224. doi: 10.1128/iai.00502-24. Epub 2025 May 19.
5
Nitric Oxide Inhibition of Glycyl Radical Enzymes and Their Activases.
J Am Chem Soc. 2025 Apr 9;147(14):11777-11788. doi: 10.1021/jacs.4c14786. Epub 2025 Mar 25.
6
Nitric Oxide Inhibition of Glycyl Radical Enzymes and Their Activases.
bioRxiv. 2025 Feb 27:2025.02.23.639758. doi: 10.1101/2025.02.23.639758.
7
How FocA facilitates fermentation and respiration of formate by .
J Bacteriol. 2025 Feb 20;207(2):e0050224. doi: 10.1128/jb.00502-24. Epub 2025 Jan 27.
8
Mechanistic Insights Into Post-Translational α-Keto-β-Amino Acid Formation by a Radical S-Adenosyl Methionine Peptide Splicease.
Angew Chem Int Ed Engl. 2025 Feb 3;64(6):e202418054. doi: 10.1002/anie.202418054. Epub 2025 Jan 10.
9
Initiation, Propagation, and Termination in the Chemistry of Radical SAM Enzymes.
Biochemistry. 2024 Dec 17;63(24):3161-3183. doi: 10.1021/acs.biochem.4c00518. Epub 2024 Dec 3.

本文引用的文献

2
3
Molecular Basis of C-N Bond Cleavage by the Glycyl Radical Enzyme Choline Trimethylamine-Lyase.
Cell Chem Biol. 2016 Oct 20;23(10):1206-1216. doi: 10.1016/j.chembiol.2016.07.020. Epub 2016 Sep 24.
5
Elucidating the Stereochemistry of Enzymatic Benzylsuccinate Synthesis with Chirally Labeled Toluene.
Angew Chem Int Ed Engl. 2016 Sep 12;55(38):11664-7. doi: 10.1002/anie.201605197. Epub 2016 Aug 9.
6
1,2-Propanediol Dehydration in Roseburia inulinivorans: STRUCTURAL BASIS FOR SUBSTRATE AND ENANTIOMER SELECTIVITY.
J Biol Chem. 2016 Jul 22;291(30):15515-26. doi: 10.1074/jbc.M116.721142. Epub 2016 Jun 1.
9
Key enzymes catalyzing glycerol to 1,3-propanediol.
Biotechnol Biofuels. 2016 Mar 10;9:57. doi: 10.1186/s13068-016-0473-6. eCollection 2016.
10
Structure and Function of 4-Hydroxyphenylacetate Decarboxylase and Its Cognate Activating Enzyme.
J Mol Microbiol Biotechnol. 2016;26(1-3):76-91. doi: 10.1159/000440882. Epub 2016 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验