Suppr超能文献

石墨烯在下一代神经接口的设计与工程中的应用。

Graphene in the Design and Engineering of Next-Generation Neural Interfaces.

机构信息

Nanomedicine Lab, Faculty of Biology Medicine & Health, National Graphene Institute, University of Manchester, AV Hill Building, Manchester, M13 9PT, U.K.

Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain.

出版信息

Adv Mater. 2017 Nov;29(42). doi: 10.1002/adma.201700909. Epub 2017 Sep 13.

Abstract

Neural interfaces are becoming a powerful toolkit for clinical interventions requiring stimulation and/or recording of the electrical activity of the nervous system. Active implantable devices offer a promising approach for the treatment of various diseases affecting the central or peripheral nervous systems by electrically stimulating different neuronal structures. All currently used neural interface devices are designed to perform a single function: either record activity or electrically stimulate tissue. Because of their electrical and electrochemical performance and their suitability for integration into flexible devices, graphene-based materials constitute a versatile platform that could help address many of the current challenges in neural interface design. Here, how graphene and other 2D materials possess an array of properties that can enable enhanced functional capabilities for neural interfaces is illustrated. It is emphasized that the technological challenges are similar for all alternative types of materials used in the engineering of neural interface devices, each offering a unique set of advantages and limitations. Graphene and 2D materials can indeed play a commanding role in the efforts toward wider clinical adoption of bioelectronics and electroceuticals.

摘要

神经接口正成为一种强大的工具包,可用于需要刺激和/或记录神经系统电活动的临床干预。有源植入式设备为通过电刺激不同的神经元结构来治疗各种影响中枢或外周神经系统的疾病提供了一种很有前途的方法。目前所有使用的神经接口设备都被设计为执行单一功能:记录活动或电刺激组织。由于其电气和电化学性能以及适合集成到柔性设备中,基于石墨烯的材料构成了一个通用平台,可以帮助解决神经接口设计中的许多当前挑战。在这里,说明了石墨烯和其他二维材料具有一系列特性,可以为神经接口提供增强的功能能力。需要强调的是,用于神经接口设备工程的所有替代类型的材料都面临着类似的技术挑战,每种材料都提供了一组独特的优势和局限性。石墨烯和二维材料确实可以在努力实现生物电子学和电疗的更广泛临床应用方面发挥主导作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验