Suppr超能文献

纳米神经科学进展:从纳米材料到纳米工具

Advances in Nano Neuroscience: From Nanomaterials to Nanotools.

作者信息

Pampaloni Niccolò Paolo, Giugliano Michele, Scaini Denis, Ballerini Laura, Rauti Rossana

机构信息

Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy.

Department of Biomedical Sciences and Institute Born-Bunge, Molecular, Cellular, and Network Excitability, Universiteit Antwerpen, Antwerpen, Belgium.

出版信息

Front Neurosci. 2019 Jan 15;12:953. doi: 10.3389/fnins.2018.00953. eCollection 2018.

Abstract

During the last decades, neuroscientists have increasingly exploited a variety of artificial, synthesized materials with controlled nano-sized features. For instance, a renewed interest in the development of prostheses or neural interfaces was driven by the availability of novel nanomaterials that enabled the fabrication of implantable bioelectronics interfaces with reduced side effects and increased integration with the target biological tissue. The peculiar physical-chemical properties of nanomaterials have also contributed to the engineering of novel imaging devices toward sophisticated experimental settings, to smart fabricated scaffolds and microelectrodes, or other tools ultimately aimed at a better understanding of neural tissue functions. In this review, we focus on nanomaterials and specifically on carbon-based nanomaterials, such as carbon nanotubes (CNTs) and graphene. While these materials raise potential safety concerns, they represent a tremendous technological opportunity for the restoration of neuronal functions. We then describe nanotools such as nanowires and nano-modified MEA for high-performance electrophysiological recording and stimulation of neuronal electrical activity. We finally focus on the fabrication of three-dimensional synthetic nanostructures, used as substrates to interface biological cells and tissues and .

摘要

在过去几十年中,神经科学家越来越多地利用各种具有可控纳米尺寸特征的人工合成材料。例如,新型纳米材料的出现激发了人们对假肢或神经接口开发的新兴趣,这些材料能够制造出具有减少副作用并增强与目标生物组织整合能力的可植入生物电子接口。纳米材料独特的物理化学性质也推动了新型成像设备的工程化发展,使其适用于复杂的实验环境,还推动了智能制造的支架、微电极以及其他最终旨在更好地理解神经组织功能的工具的发展。在本综述中,我们聚焦于纳米材料,特别是碳基纳米材料,如碳纳米管(CNT)和石墨烯。虽然这些材料引发了潜在的安全担忧,但它们为神经元功能的恢复提供了巨大的技术机遇。然后,我们描述了用于高性能电生理记录和刺激神经元电活动的纳米工具,如纳米线和纳米修饰的微电极阵列(MEA)。最后,我们聚焦于三维合成纳米结构的制造,这些结构用作与生物细胞和组织进行界面连接的基质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87df/6341218/2db284a1487a/fnins-12-00953-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验