University of Notre Dame.
Psychol Sci. 2017 Nov;28(11):1547-1562. doi: 10.1177/0956797617723724. Epub 2017 Sep 13.
The sample size necessary to obtain a desired level of statistical power depends in part on the population value of the effect size, which is, by definition, unknown. A common approach to sample-size planning uses the sample effect size from a prior study as an estimate of the population value of the effect to be detected in the future study. Although this strategy is intuitively appealing, effect-size estimates, taken at face value, are typically not accurate estimates of the population effect size because of publication bias and uncertainty. We show that the use of this approach often results in underpowered studies, sometimes to an alarming degree. We present an alternative approach that adjusts sample effect sizes for bias and uncertainty, and we demonstrate its effectiveness for several experimental designs. Furthermore, we discuss an open-source R package, BUCSS, and user-friendly Web applications that we have made available to researchers so that they can easily implement our suggested methods.
获得所需统计功效水平所需的样本量部分取决于效应大小的总体值,而该值根据定义是未知的。一种常见的样本量规划方法是使用先前研究中的样本效应大小作为未来研究中要检测到的效应的总体值的估计值。尽管这种策略在直观上很有吸引力,但由于发表偏倚和不确定性,仅从表面上看,效应大小的估计值通常不是总体效应大小的准确估计值。我们表明,这种方法的使用通常会导致研究效力不足,有时甚至达到令人震惊的程度。我们提出了一种替代方法,该方法可调整偏倚和不确定性的样本效应大小,并且我们针对几种实验设计证明了其有效性。此外,我们讨论了一个开源 R 包 BUCSS 以及我们提供给研究人员的用户友好型 Web 应用程序,以便他们可以轻松实现我们建议的方法。