Arizona State University.
Psychol Methods. 2021 Oct;26(5):513-526. doi: 10.1037/met0000366. Epub 2020 Oct 29.
Despite increased attention to the role of statistical power in psychological studies, navigating the process of sample size planning for linear regression designs can be challenging. In particular, it can be difficult to decide upon an appropriate value for the effect size, owing to a variety of factors, including the influence of the correlations among the predictors and between the other predictors and the outcome, in addition to the correlation between the particular predictor(s) in question and the outcome, on statistical power. One approach that addresses these concerns is to use available prior sample information but adjust the sample effect size appropriately for publication bias and/or uncertainty. This article motivates a procedure that accomplishes this, Bias Uncertainty Corrected Sample Size (BUCSS), as a valid approach for linear regression, carefully illustrating how BUCSS may be used in practice. To demonstrate the relevant factors influencing BUCSS performance and ensure it performs well in plausible regression contexts, a Monte Carlo simulation is reported. Importantly, the present difficulties in sample size planning for regression are explained, followed by clear illustrations using BUCSS software for a variety of common practical scenarios in regression studies. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
尽管人们越来越关注统计学在心理学研究中的作用,但对于线性回归设计的样本量规划过程,导航仍然具有挑战性。特别是,由于各种因素的影响,包括预测变量之间以及其他预测变量与结果之间的相关性,以及特定预测变量与结果之间的相关性,确定合适的效应大小值可能具有一定难度。一种解决这些问题的方法是利用可用的先前样本信息,但根据发表偏倚和/或不确定性适当调整样本效应大小。本文提出了一种可以解决这些问题的方法,即偏置不确定性校正样本量(BUCSS),这是一种用于线性回归的有效方法,详细说明了如何在实践中使用 BUCSS。为了演示影响 BUCSS 性能的相关因素,并确保其在合理的回归情况下表现良好,进行了蒙特卡罗模拟。重要的是,本文解释了回归中样本量规划的当前困难,并使用 BUCSS 软件清晰地说明了回归研究中各种常见实际情况的应用。(PsycInfo 数据库记录(c)2021 APA,保留所有权利)。