Suppr超能文献

神经学证据支持昆虫翅膀具有双重感觉运动功能。

Neural evidence supports a dual sensory-motor role for insect wings.

作者信息

Pratt Brandon, Deora Tanvi, Mohren Thomas, Daniel Thomas

机构信息

Department of Biology, University of Washington, Seattle, WA 98105, USA.

Department of Mechanical Engineering, University of Washington, Seattle, WA 98105, USA.

出版信息

Proc Biol Sci. 2017 Sep 13;284(1862). doi: 10.1098/rspb.2017.0969.

Abstract

Flying insects use feedback from various sensory modalities including vision and mechanosensation to navigate through their environment. The rapid speed of mechanosensory information acquisition and processing compensates for the slower processing times associated with vision, particularly under low light conditions. While halteres in dipteran species are well known to provide such information for flight control, less is understood about the mechanosensory roles of their evolutionary antecedent, wings. The features that wing mechanosensory neurons (campaniform sensilla) encode remains relatively unexplored. We hypothesized that the wing campaniform sensilla of the hawkmoth, rapidly and selectively extract mechanical stimulus features in a manner similar to halteres. We used electrophysiological and computational techniques to characterize the encoding properties of wing campaniform sensilla. To accomplish this, we developed a novel technique for localizing receptive fields using a focused IR laser that elicits changes in the neural activity of mechanoreceptors. We found that (i) most wing mechanosensors encoded mechanical stimulus features rapidly and precisely, (ii) they are selective for specific stimulus features, and (iii) there is diversity in the encoding properties of wing campaniform sensilla. We found that the encoding properties of wing campaniform sensilla are similar to those for haltere neurons. Therefore, it appears that the neural architecture that underlies the haltere sensory function is present in wings, which lends credence to the notion that wings themselves may serve a similar sensory function. Thus, wings may not only function as the primary actuator of the organism but also as sensors of the inertial dynamics of the animal.

摘要

飞行昆虫利用包括视觉和机械感觉在内的各种感觉模态的反馈来在其环境中导航。机械感觉信息获取和处理的快速速度弥补了与视觉相关的较慢处理时间,特别是在低光照条件下。虽然双翅目昆虫的平衡棒众所周知可为飞行控制提供此类信息,但对于其进化前身翅膀的机械感觉作用了解较少。翅膀机械感觉神经元(钟形感器)编码的特征仍相对未被探索。我们假设,天蛾的翅膀钟形感器以类似于平衡棒的方式快速且选择性地提取机械刺激特征。我们使用电生理和计算技术来表征翅膀钟形感器的编码特性。为了实现这一点,我们开发了一种使用聚焦红外激光定位感受野的新技术,该激光会引起机械感受器神经活动的变化。我们发现:(i)大多数翅膀机械感受器快速且精确地编码机械刺激特征;(ii)它们对特定刺激特征具有选择性;(iii)翅膀钟形感器的编码特性存在多样性。我们发现翅膀钟形感器的编码特性与平衡棒神经元的编码特性相似。因此,似乎平衡棒感觉功能背后的神经结构存在于翅膀中,这支持了翅膀本身可能具有类似感觉功能的观点。因此,翅膀不仅可能作为生物体的主要驱动器,还可能作为动物惯性动力学的传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e927/5597827/21c5640754bc/rspb20170969-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验