Suppr超能文献

相似文献

1
A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry.
Nat Commun. 2017 Sep 13;8(1):527. doi: 10.1038/s41467-017-00649-7.
3
Carbon materials for ion-intercalation involved rechargeable battery technologies.
Chem Soc Rev. 2021 Feb 21;50(4):2388-2443. doi: 10.1039/d0cs00187b. Epub 2020 Dec 21.
4
Iodine Redox Chemistry in Rechargeable Batteries.
Angew Chem Int Ed Engl. 2021 Jun 1;60(23):12636-12647. doi: 10.1002/anie.202009871. Epub 2021 Feb 17.
5
Enhanced Lithium- and Sodium-Ion Storage in an Interconnected Carbon Network Comprising Electronegative Fluorine.
ACS Appl Mater Interfaces. 2017 Jun 7;9(22):18790-18798. doi: 10.1021/acsami.7b03456. Epub 2017 May 24.
6
Anchoring Iodine to N-Doped Hollow Carbon Fold-Hemisphere: Toward a Fast and Stable Cathode for Rechargeable Lithium-Iodine Batteries.
ACS Appl Mater Interfaces. 2017 Jun 21;9(24):20508-20518. doi: 10.1021/acsami.7b02943. Epub 2017 Jun 8.
7
Dual-Templating Approaches to Soybeans Milk-Derived Hierarchically Porous Heteroatom-Doped Carbon Materials for Lithium-Ion Batteries.
ChemistryOpen. 2020 May 12;9(5):582-587. doi: 10.1002/open.202000081. eCollection 2020 May.
8
Lithium versus Mono/Polyvalent Ion Intercalation: Hybrid Metal Ion Systems for Energy Storage.
Chem Rec. 2019 Feb;19(2-3):474-501. doi: 10.1002/tcr.201800081. Epub 2018 Aug 17.
10
Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes.
ACS Nano. 2016 Oct 25;10(10):9738-9744. doi: 10.1021/acsnano.6b05998. Epub 2016 Oct 14.

引用本文的文献

1
Constructing static two-electron lithium-bromide battery.
Sci Adv. 2024 Jun 14;10(24):eadl0587. doi: 10.1126/sciadv.adl0587.
2
Halogen-powered static conversion chemistry.
Nat Rev Chem. 2024 May;8(5):359-375. doi: 10.1038/s41570-024-00597-z. Epub 2024 Apr 26.
3
Suppressing the Shuttle Effect of Aqueous Zinc-Iodine Batteries: Progress and Prospects.
Materials (Basel). 2024 Apr 3;17(7):1646. doi: 10.3390/ma17071646.
4
Unleashing the high energy potential of zinc-iodide batteries: high-loaded thick electrodes designed with zinc iodide as the cathode.
Chem Sci. 2024 Feb 23;15(12):4581-4589. doi: 10.1039/d4sc00276h. eCollection 2024 Mar 20.
5
Insights into Nano- and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage.
Nanomicro Lett. 2024 Feb 23;16(1):130. doi: 10.1007/s40820-024-01341-4.
6
Bidirectional manipulation of iodine redox kinetics in aqueous Fe-I electrochemistry.
Chem Sci. 2023 Oct 20;14(44):12730-12738. doi: 10.1039/d3sc04853e. eCollection 2023 Nov 15.
7
Rechargeable Aqueous Zinc-Halogen Batteries: Fundamental Mechanisms, Research Issues, and Future Perspectives.
Adv Sci (Weinh). 2024 Feb;11(8):e2305061. doi: 10.1002/advs.202305061. Epub 2023 Nov 8.
8
Improved defluoridation and energy production using dimethyl sulfoxide modified carbon cloth as bioanode in microbial desalination cell.
Heliyon. 2023 May 27;9(6):e16614. doi: 10.1016/j.heliyon.2023.e16614. eCollection 2023 Jun.
9
Reversible Electrochemical Energy Storage Based on Zinc-Halide Chemistry.
ACS Appl Mater Interfaces. 2021 Mar 31;13(12):14112-14121. doi: 10.1021/acsami.0c20622. Epub 2021 Mar 16.
10
Ab Initio Screening of Doped Mg(AlH) Systems for Conversion-Type Lithium Storage.
Materials (Basel). 2019 Aug 15;12(16):2599. doi: 10.3390/ma12162599.

本文引用的文献

1
Intricate Hollow Structures: Controlled Synthesis and Applications in Energy Storage and Conversion.
Adv Mater. 2017 May;29(20). doi: 10.1002/adma.201602914. Epub 2017 Feb 7.
2
Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage.
Adv Mater. 2017 Apr;29(13). doi: 10.1002/adma.201605361. Epub 2017 Jan 23.
3
Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):840-845. doi: 10.1073/pnas.1615837114. Epub 2017 Jan 17.
4
Achieving High-Performance Room-Temperature Sodium-Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres.
J Am Chem Soc. 2016 Dec 28;138(51):16576-16579. doi: 10.1021/jacs.6b08685. Epub 2016 Dec 19.
5
High-Capacity Aqueous Potassium-Ion Batteries for Large-Scale Energy Storage.
Adv Mater. 2017 Jan;29(1). doi: 10.1002/adma.201604007. Epub 2016 Oct 26.
6
Ion-Catalyzed Synthesis of Microporous Hard Carbon Embedded with Expanded Nanographite for Enhanced Lithium/Sodium Storage.
J Am Chem Soc. 2016 Nov 16;138(45):14915-14922. doi: 10.1021/jacs.6b06673. Epub 2016 Nov 4.
7
A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries.
Angew Chem Int Ed Engl. 2016 Aug 26;55(36):10662-6. doi: 10.1002/anie.201604519. Epub 2016 Aug 3.
9
General Preparation of Three-Dimensional Porous Metal Oxide Foams Coated with Nitrogen-Doped Carbon for Enhanced Lithium Storage.
ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17402-8. doi: 10.1021/acsami.6b04587. Epub 2016 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验