Suppr超能文献

细菌琥珀聚糖的结构与功能特性、生物合成及专利趋势综述

Structural and Functional Properties, Biosynthesis, and Patenting Trends of Bacterial Succinoglycan: A Review.

作者信息

Halder Urmi, Banerjee Aparna, Bandopadhyay Rajib

机构信息

UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Burdwan, West Bengal 713104 India.

出版信息

Indian J Microbiol. 2017 Sep;57(3):278-284. doi: 10.1007/s12088-017-0655-3. Epub 2017 Jun 12.

Abstract

The exopolysaccharide succinoglycan is produced mainly by a large number of soil microbes of , or genera etc. Structural properties of succinoglycan are unique in terms of its thermal stability and superior viscosifying property. Unlike the other highly commercialized bacterial exopolysaccharides like dextran or xanthan, mass scale application of succinoglycan has not been that much broadly explored yet. Bacterial succinoglycan is found suitable as a viscosifying and emulsifying agent in food industry, in gravel packing or fluid-loss control agent etc. In this present review, the key aspects of succinoglycan study, in particular, developments in structural characterizations, / operon system involved in biosynthesis pathway, commercial applications in food and other industries and patenting trends have been discussed.

摘要

胞外多糖琥珀聚糖主要由大量属于根瘤菌属、土壤杆菌属或慢生根瘤菌属等的土壤微生物产生。琥珀聚糖的结构特性在热稳定性和优异的增粘性能方面独具特色。与其他高度商业化的细菌胞外多糖如葡聚糖或黄原胶不同,琥珀聚糖的大规模应用尚未得到广泛探索。已发现细菌琥珀聚糖适合作为食品工业中的增粘剂和乳化剂、用于砾石充填或降滤失剂等。在本综述中,讨论了琥珀聚糖研究的关键方面,特别是结构表征的进展、生物合成途径中涉及的基因簇/操纵子系统、在食品和其他行业的商业应用以及专利趋势。

相似文献

1
Structural and Functional Properties, Biosynthesis, and Patenting Trends of Bacterial Succinoglycan: A Review.
Indian J Microbiol. 2017 Sep;57(3):278-284. doi: 10.1007/s12088-017-0655-3. Epub 2017 Jun 12.
2
Bacterial Succinoglycans: Structure, Physical Properties, and Applications.
Polymers (Basel). 2022 Jan 11;14(2):276. doi: 10.3390/polym14020276.
3
Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium.
Appl Microbiol Biotechnol. 2016 Jul;100(14):6183-6192. doi: 10.1007/s00253-016-7650-1. Epub 2016 Jun 2.
4
Heterologous exopolysaccharide production in Rhizobium sp. strain NGR234 and consequences for nodule development.
J Bacteriol. 1991 May;173(10):3066-77. doi: 10.1128/jb.173.10.3066-3077.1991.
5
Important Late-Stage Symbiotic Role of the Sinorhizobium meliloti Exopolysaccharide Succinoglycan.
J Bacteriol. 2018 Jun 11;200(13). doi: 10.1128/JB.00665-17. Print 2018 Jul 1.
6
Characterization and rheological properties analysis of the succinoglycan produced by a high-yield mutant of Rhizobium radiobacter ATCC 19358.
Int J Biol Macromol. 2021 Jan 1;166:61-70. doi: 10.1016/j.ijbiomac.2020.10.087. Epub 2020 Oct 20.
7
Physicochemical and Rheological Properties of Succinoglycan Overproduced by 1021 Mutant.
Polymers (Basel). 2024 Jan 15;16(2):244. doi: 10.3390/polym16020244.
10
Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa.
Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5625-9. doi: 10.1073/pnas.89.12.5625.

引用本文的文献

1
Bacteria contribute exopolysaccharides to an algal-bacterial joint extracellular matrix.
NPJ Biofilms Microbiomes. 2024 Apr 1;10(1):36. doi: 10.1038/s41522-024-00510-y.
2
New Polyvinyl Alcohol/Succinoglycan-Based Hydrogels for pH-Responsive Drug Delivery.
Polymers (Basel). 2023 Jul 11;15(14):3009. doi: 10.3390/polym15143009.
4
Dynamic character displacement among a pair of bacterial phyllosphere commensals in situ.
Nat Commun. 2022 May 20;13(1):2836. doi: 10.1038/s41467-022-30469-3.
5
Bacterial Succinoglycans: Structure, Physical Properties, and Applications.
Polymers (Basel). 2022 Jan 11;14(2):276. doi: 10.3390/polym14020276.
7
Extremophilic Exopolysaccharides: Biotechnologies and Wastewater Remediation.
Front Microbiol. 2021 Aug 19;12:721365. doi: 10.3389/fmicb.2021.721365. eCollection 2021.
8
Fabrication of Flexible pH-Responsive Agarose/Succinoglycan Hydrogels for Controlled Drug Release.
Polymers (Basel). 2021 Jun 22;13(13):2049. doi: 10.3390/polym13132049.
9
Cryogenian Origin and Subsequent Diversification of the Plant Cell-Wall Enzyme XTH Family.
Plant Cell Physiol. 2021 Dec 27;62(12):1874-1889. doi: 10.1093/pcp/pcab093.

本文引用的文献

1
Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles.
Crit Rev Microbiol. 2017 Nov;43(6):731-752. doi: 10.1080/1040841X.2017.1306689. Epub 2017 Apr 25.
5
Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium.
Appl Microbiol Biotechnol. 2016 Jul;100(14):6183-6192. doi: 10.1007/s00253-016-7650-1. Epub 2016 Jun 2.
6
Use of dextran nanoparticle: A paradigm shift in bacterial exopolysaccharide based biomedical applications.
Int J Biol Macromol. 2016 Jun;87:295-301. doi: 10.1016/j.ijbiomac.2016.02.059. Epub 2016 Feb 27.
8
Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways.
Front Microbiol. 2015 Jul 9;6:687. doi: 10.3389/fmicb.2015.00687. eCollection 2015.
10
Ferrous iron chelating property of low-molecular weight succinoglycans isolated from Sinorhizobium meliloti.
Biometals. 2013 Apr;26(2):321-8. doi: 10.1007/s10534-013-9615-5. Epub 2013 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验