Suppr超能文献

丝状真菌利用富含淀粉的工业废渣生产衣康酸

Itaconic Acid Production by Filamentous Fungi in Starch-Rich Industrial Residues.

作者信息

Bafana Richa, Sivanesan Sarvanadevi, Pandey R A

机构信息

AcSIR (Academy of Scientific and Innovative Research), CSIR-NEERI (National Environmental Engineering Research Institute), Nagpur, 440020 India.

出版信息

Indian J Microbiol. 2017 Sep;57(3):322-328. doi: 10.1007/s12088-017-0661-5. Epub 2017 Jul 10.

Abstract

Several fungi and starch-rich industrial residues were screened for itaconic acid (IA) production. Out of 15 strains, only three fungal strains were found to produce IA, which was confirmed by HPLC and GC-MS analysis. These strains were identified as strains C1 and C2, and strain C3 by sequencing of 18S rRNA gene and internal transcribed spacer regions. -aconitate decarboxylase () gene, which encodes a key enzyme in IA production in , was characterized from strains C1 and C2. C1 and C2 gene sequences showed about 96% similarity to the only available GenBank sequence of gene. 3-D structure and -aconitic acid binding pocket of Cad enzyme were predicted by structural modeling. Rice, corn and potato starch wastes were screened for IA production. These materials were enzymatically hydrolyzed under experimentally optimized conditions resulting in the highest glucose production of 230 mg/mL from 20% potato waste. On comparing the production potential of selected strains with different wastes, the best IA production was achieved with strain C1 (255.7 mg/L) using potato waste. Elemental composition as well as batch-to-batch variation in waste substrates were analyzed. The difference in IA production from two different batches of potato waste was found to inversely correlate with their phosphorus content, which indicated that produced IA under phosphate limiting condition. The potato waste hydrolysate was deionized to remove inhibitory ions like phosphate, resulting in improved IA production of 4.1 g/L by C1 strain, which is commercially competitive.

摘要

筛选了几种真菌和富含淀粉的工业废渣用于生产衣康酸(IA)。在15个菌株中,仅发现3个真菌菌株能够产生IA,通过高效液相色谱(HPLC)和气相色谱 - 质谱联用(GC - MS)分析得以证实。通过对18S rRNA基因和内部转录间隔区进行测序,将这些菌株鉴定为C1和C2菌株以及C3菌株。从C1和C2菌株中对编码IA生产关键酶的乌头酸脱羧酶()基因进行了表征。C1和C2的基因序列与GenBank中唯一可用的基因序列显示出约96%的相似性。通过结构建模预测了Cad酶的三维结构和乌头酸结合口袋。筛选了水稻、玉米和马铃薯淀粉废渣用于IA生产。在实验优化条件下对这些材料进行酶解,20%的马铃薯废渣产生的葡萄糖产量最高可达230 mg/mL。比较所选菌株利用不同废渣的生产潜力,使用马铃薯废渣时,C1菌株的IA产量最高(255.7 mg/L)。分析了废渣底物的元素组成以及批次间的差异。发现两批不同马铃薯废渣的IA产量差异与它们的磷含量呈负相关,这表明在磷酸盐限制条件下产生IA。对马铃薯废渣水解产物进行去离子处理以去除诸如磷酸盐等抑制性离子,C1菌株的IA产量提高到4.1 g/L,具有商业竞争力。

相似文献

1
Itaconic Acid Production by Filamentous Fungi in Starch-Rich Industrial Residues.
Indian J Microbiol. 2017 Sep;57(3):322-328. doi: 10.1007/s12088-017-0661-5. Epub 2017 Jul 10.
2
Optimization and scale up of itaconic acid production from potato starch waste in stirred tank bioreactor.
Biotechnol Prog. 2019 May;35(3):e2774. doi: 10.1002/btpr.2774. Epub 2019 Jan 23.
3
Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger.
Microb Cell Fact. 2016 Jul 28;15(1):130. doi: 10.1186/s12934-016-0527-2.
4
Itaconic acid production from undetoxified enzymatic hydrolysate of bamboo residues using Aspergillus terreus.
Bioresour Technol. 2020 Jul;307:123208. doi: 10.1016/j.biortech.2020.123208. Epub 2020 Mar 17.
5
Enhanced Production of Itaconic Acid through Development of Transformed Fungal Strains of .
J Microbiol Biotechnol. 2017 Feb 28;27(2):306-315. doi: 10.4014/jmb.1611.11054.
7
Metabolic engineering of an acid-tolerant yeast strain for itaconic acid production.
Metab Eng Commun. 2020 Feb 11;10:e00124. doi: 10.1016/j.mec.2020.e00124. eCollection 2020 Jun.
8
Mannose and galactose as substrates for production of itaconic acid by Aspergillus terreus.
Lett Appl Microbiol. 2017 Dec;65(6):527-533. doi: 10.1111/lam.12810. Epub 2017 Oct 29.
10
Synthesis of itaconic acid from agricultural waste using novel .
Prep Biochem Biotechnol. 2018;48(7):605-609. doi: 10.1080/10826068.2018.1476884. Epub 2018 Jun 11.

引用本文的文献

1
Biomass-Derived Production of Itaconic Acid as a Building Block in Specialty Polymers.
Polymers (Basel). 2019 Jun 11;11(6):1035. doi: 10.3390/polym11061035.

本文引用的文献

1
Waste biorefineries using filamentous ascomycetes fungi: Present status and future prospects.
Bioresour Technol. 2016 Sep;215:334-345. doi: 10.1016/j.biortech.2016.03.018. Epub 2016 Mar 12.
2
DNA barcoding of fungi causing infections in humans and animals.
Fungal Biol. 2016 Feb;120(2):125-36. doi: 10.1016/j.funbio.2015.04.007. Epub 2015 Apr 30.
3
Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate.
Microb Biotechnol. 2016 Jan;9(1):116-26. doi: 10.1111/1751-7915.12329. Epub 2015 Dec 7.
4
Regulating Pyruvate Carboxylase in the Living Culture of Aspergillus Terreus Nrrl 1960 by L-Aspartate for Enhanced Itaconic Acid Production.
Appl Biochem Biotechnol. 2015 Oct;177(3):595-609. doi: 10.1007/s12010-015-1763-3. Epub 2015 Jul 25.
5
The Phyre2 web portal for protein modeling, prediction and analysis.
Nat Protoc. 2015 Jun;10(6):845-58. doi: 10.1038/nprot.2015.053. Epub 2015 May 7.
6
Itaconic acid--a biotechnological process in change.
Bioresour Technol. 2013 May;135:422-31. doi: 10.1016/j.biortech.2012.11.141. Epub 2012 Dec 8.
7
Microbial production of itaconic acid: developing a stable platform for high product concentrations.
Appl Microbiol Biotechnol. 2012 Dec;96(5):1209-16. doi: 10.1007/s00253-012-4221-y. Epub 2012 Jul 1.
8
Biomass pretreatment affects Ustilago maydis in producing itaconic acid.
Microb Cell Fact. 2012 Apr 5;11:43. doi: 10.1186/1475-2859-11-43.
9
Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi.
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6241-6. doi: 10.1073/pnas.1117018109. Epub 2012 Mar 27.
10
SwissDock, a protein-small molecule docking web service based on EADock DSS.
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W270-7. doi: 10.1093/nar/gkr366. Epub 2011 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验