Suppr超能文献

基于光聚合的氧化铁纳米颗粒嵌入聚N-异丙基丙烯酰胺纳米凝胶的合成及其生物医学应用

Photopolymerization-based synthesis of iron oxide nanoparticle embedded PNIPAM nanogels for biomedical applications.

作者信息

Denmark Daniel J, Hyde Robert H, Gladney Charlotte, Phan Manh-Huong, Bisht Kirpal S, Srikanth Hariharan, Mukherjee Pritish, Witanachchi Sarath

机构信息

a Department of Physics , University of South Florida , Tampa , FL , USA.

b Department of Physics , University of Alabama , Tuscaloosa , AL , USA.

出版信息

Drug Deliv. 2017 Nov;24(1):1317-1324. doi: 10.1080/10717544.2017.1373164.

Abstract

Conventional therapeutic techniques treat patients by delivering biotherapeutics to the entire body. With targeted delivery, biotherapeutics are transported to the afflicted tissue reducing exposure to healthy tissue. Targeted delivery devices are minimally composed of a stimuli responsive polymer allowing triggered release and magnetic nanoparticles enabling targeting as well as alternating magnetic field (AMF) heating. Although more traditional methods, like emulsion polymerization, have been used to realize such devices, the synthesis is problematic. For example, surfactants preventing agglomeration must be removed from the product increasing time and cost. Ultraviolet (UV) photopolymerization is more efficient and ensures safety by using biocompatible substances. Reactants selected for nanogel fabrication were N-isopropylacrylamide (monomer), methylene bis-acrylamide (crosslinker), and Irgacure 2959 (photoinitiator). The 10 nm superparamagnetic nanoparticles for encapsulation were composed of iron oxide. Herein, a low-cost, scalable, and rapid, custom-built UV photoreactor with in situ, spectroscopic monitoring system is used to observe synthesis. This method also allows in situ encapsulation of the magnetic nanoparticles simplifying the process. Nanogel characterization, performed by transmission electron microscopy, reveals size-tunable nanogel spheres between 40 and 800 nm in diameter. Samples of nanogels encapsulating magnetic nanoparticles were subjected to an AMF and temperature increase was observed indicating triggered release is possible. Results presented here will have a wide range of applications in medical sciences like oncology, gene delivery, cardiology, and endocrinology.

摘要

传统治疗技术通过将生物治疗剂输送到全身来治疗患者。通过靶向递送,生物治疗剂被运输到患病组织,减少了对健康组织的暴露。靶向递送装置至少由一个允许触发释放的刺激响应聚合物和能够实现靶向的磁性纳米颗粒以及交变磁场(AMF)加热组成。尽管已经使用了更传统的方法,如乳液聚合来实现此类装置,但合成过程存在问题。例如,必须从产品中去除防止团聚的表面活性剂,这增加了时间和成本。紫外(UV)光聚合更高效,并通过使用生物相容性物质确保安全性。用于制备纳米凝胶的反应物是N-异丙基丙烯酰胺(单体)、亚甲基双丙烯酰胺(交联剂)和Irgacure 2959(光引发剂)。用于封装的10纳米超顺磁性纳米颗粒由氧化铁组成。在此,使用一种具有原位光谱监测系统的低成本、可扩展且快速的定制紫外光反应器来观察合成过程。该方法还允许对磁性纳米颗粒进行原位封装,简化了工艺。通过透射电子显微镜进行的纳米凝胶表征显示,纳米凝胶球的直径在40至800纳米之间,尺寸可调。对封装有磁性纳米颗粒的纳米凝胶样品施加交变磁场,观察到温度升高,表明触发释放是可能的。本文展示的结果将在肿瘤学、基因递送、心脏病学和内分泌学等医学科学领域有广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82ad/8241111/d9764e9017e1/IDRD_A_1373164_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验