Suppr超能文献

使用自然语言处理技术准确识别结肠镜检查质量和息肉发现。

Accurate Identification of Colonoscopy Quality and Polyp Findings Using Natural Language Processing.

机构信息

Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco.

Division of Research, Kaiser Permanente Northern California, Oakland, CA.

出版信息

J Clin Gastroenterol. 2019 Jan;53(1):e25-e30. doi: 10.1097/MCG.0000000000000929.

Abstract

OBJECTIVES

The aim of this study was to test the ability of a commercially available natural language processing (NLP) tool to accurately extract examination quality-related and large polyp information from colonoscopy reports with varying report formats.

BACKGROUND

Colonoscopy quality reporting often requires manual data abstraction. NLP is another option for extracting information; however, limited data exist on its ability to accurately extract examination quality and polyp findings from unstructured text in colonoscopy reports with different reporting formats.

STUDY DESIGN

NLP strategies were developed using 500 colonoscopy reports from Kaiser Permanente Northern California and then tested using 300 separate colonoscopy reports that underwent manual chart review. Using findings from manual review as the reference standard, we evaluated the NLP tool's sensitivity, specificity, positive predictive value (PPV), and accuracy for identifying colonoscopy examination indication, cecal intubation, bowel preparation adequacy, and polyps ≥10 mm.

RESULTS

The NLP tool was highly accurate in identifying examination quality-related variables from colonoscopy reports. Compared with manual review, sensitivity for screening indication was 100% (95% confidence interval: 95.3%-100%), PPV was 90.6% (82.3%-95.8%), and accuracy was 98.2% (97.0%-99.4%). For cecal intubation, sensitivity was 99.6% (98.0%-100%), PPV was 100% (98.5%-100%), and accuracy was 99.8% (99.5%-100%). For bowel preparation adequacy, sensitivity was 100% (98.5%-100%), PPV was 100% (98.5%-100%), and accuracy was 100% (100%-100%). For polyp(s) ≥10 mm, sensitivity was 90.5% (69.6%-98.8%), PPV was 100% (82.4%-100%), and accuracy was 95.2% (88.8%-100%).

CONCLUSION

NLP yielded a high degree of accuracy for identifying examination quality-related and large polyp information from diverse types of colonoscopy reports.

摘要

目的

本研究旨在测试一款商用自然语言处理(NLP)工具从不同报告格式的结肠镜检查报告中准确提取与检查质量相关和大息肉信息的能力。

背景

结肠镜检查质量报告通常需要手动数据提取。NLP 是提取信息的另一种选择;然而,关于其从不同报告格式的结肠镜检查报告中的非结构化文本中准确提取检查质量和息肉发现的能力的数据有限。

研究设计

使用 Kaiser Permanente Northern California 的 500 份结肠镜检查报告开发 NLP 策略,然后使用 300 份单独的接受手动图表审查的结肠镜检查报告进行测试。使用手动审查的结果作为参考标准,我们评估了 NLP 工具识别结肠镜检查适应证、盲肠插管、肠道准备充分性和 ≥10mm 息肉的灵敏度、特异性、阳性预测值(PPV)和准确性。

结果

NLP 工具在从结肠镜检查报告中识别与检查质量相关的变量方面具有高度准确性。与手动审查相比,筛查适应证的灵敏度为 100%(95%置信区间:95.3%-100%),PPV 为 90.6%(82.3%-95.8%),准确性为 98.2%(97.0%-99.4%)。对于盲肠插管,灵敏度为 99.6%(98.0%-100%),PPV 为 100%(98.5%-100%),准确性为 99.8%(99.5%-100%)。对于肠道准备充分性,灵敏度为 100%(98.5%-100%),PPV 为 100%(98.5%-100%),准确性为 100%(100%-100%)。对于 ≥10mm 的息肉,灵敏度为 90.5%(69.6%-98.8%),PPV 为 100%(82.4%-100%),准确性为 95.2%(88.8%-100%)。

结论

NLP 工具从各种类型的结肠镜检查报告中识别与检查质量相关和大息肉信息具有高度准确性。

相似文献

1
Accurate Identification of Colonoscopy Quality and Polyp Findings Using Natural Language Processing.
J Clin Gastroenterol. 2019 Jan;53(1):e25-e30. doi: 10.1097/MCG.0000000000000929.
3
Natural Language Processing Accurately Calculates Adenoma and Sessile Serrated Polyp Detection Rates.
Dig Dis Sci. 2018 Jul;63(7):1794-1800. doi: 10.1007/s10620-018-5078-4. Epub 2018 Apr 26.
4
Multi-center colonoscopy quality measurement utilizing natural language processing.
Am J Gastroenterol. 2015 Apr;110(4):543-52. doi: 10.1038/ajg.2015.51. Epub 2015 Mar 10.
9
Natural language processing as an alternative to manual reporting of colonoscopy quality metrics.
Gastrointest Endosc. 2015 Sep;82(3):512-9. doi: 10.1016/j.gie.2015.01.049. Epub 2015 Apr 22.
10
Applying a natural language processing tool to electronic health records to assess performance on colonoscopy quality measures.
Gastrointest Endosc. 2012 Jun;75(6):1233-9.e14. doi: 10.1016/j.gie.2012.01.045. Epub 2012 Apr 4.

引用本文的文献

1
Clinical applications of large language models in medicine and surgery: A scoping review.
J Int Med Res. 2025 Jul;53(7):3000605251347556. doi: 10.1177/03000605251347556. Epub 2025 Jul 4.
2
Emerging applications of NLP and large language models in gastroenterology and hepatology: a systematic review.
Front Med (Lausanne). 2025 Jan 22;11:1512824. doi: 10.3389/fmed.2024.1512824. eCollection 2024.
3
A foundation systematic review of natural language processing applied to gastroenterology & hepatology.
BMC Gastroenterol. 2025 Feb 6;25(1):58. doi: 10.1186/s12876-025-03608-5.
4
Surveillance Colonoscopy Findings in Older Adults With a History of Colorectal Adenomas.
JAMA Netw Open. 2024 Apr 1;7(4):e244611. doi: 10.1001/jamanetworkopen.2024.4611.
5
Natural Language Processing Can Automate Extraction of Barrett's Esophagus Endoscopy Quality Metrics.
medRxiv. 2023 Jul 13:2023.07.11.23292529. doi: 10.1101/2023.07.11.23292529.
7
Deep learning approach to detection of colonoscopic information from unstructured reports.
BMC Med Inform Decis Mak. 2023 Feb 7;23(1):28. doi: 10.1186/s12911-023-02121-7.
9
The h-ANN Model: Comprehensive Colonoscopy Concept Compilation Using Combined Contextual Embeddings.
Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2022 Feb;5:189-200. doi: 10.5220/0010903300003123.
10
Automated detection of cecal intubation with variable bowel preparation using a deep convolutional neural network.
Endosc Int Open. 2021 Nov 12;9(11):E1778-E1784. doi: 10.1055/a-1546-8266. eCollection 2021 Nov.

本文引用的文献

1
Factors Affecting Accuracy of Data Abstracted from Medical Records.
PLoS One. 2015 Oct 20;10(10):e0138649. doi: 10.1371/journal.pone.0138649. eCollection 2015.
2
Longer Withdrawal Time Is Associated With a Reduced Incidence of Interval Cancer After Screening Colonoscopy.
Gastroenterology. 2015 Oct;149(4):952-7. doi: 10.1053/j.gastro.2015.06.044. Epub 2015 Jul 9.
3
Natural language processing as an alternative to manual reporting of colonoscopy quality metrics.
Gastrointest Endosc. 2015 Sep;82(3):512-9. doi: 10.1016/j.gie.2015.01.049. Epub 2015 Apr 22.
4
Multi-center colonoscopy quality measurement utilizing natural language processing.
Am J Gastroenterol. 2015 Apr;110(4):543-52. doi: 10.1038/ajg.2015.51. Epub 2015 Mar 10.
5
Development and validation of an algorithm for classifying colonoscopy indication.
Gastrointest Endosc. 2015 Mar;81(3):575-582.e4. doi: 10.1016/j.gie.2014.07.031. Epub 2015 Jan 8.
6
Quality indicators for colonoscopy.
Gastrointest Endosc. 2015 Jan;81(1):31-53. doi: 10.1016/j.gie.2014.07.058. Epub 2014 Dec 2.
7
Quality indicators for colonoscopy.
Am J Gastroenterol. 2015 Jan;110(1):72-90. doi: 10.1038/ajg.2014.385. Epub 2014 Dec 2.
8
Adjusting for patient demographics has minimal effects on rates of adenoma detection in a large, community-based setting.
Clin Gastroenterol Hepatol. 2015 Apr;13(4):739-46. doi: 10.1016/j.cgh.2014.10.020. Epub 2014 Oct 25.
9
Anatomic and advanced adenoma detection rates as quality metrics determined via natural language processing.
Am J Gastroenterol. 2014 Dec;109(12):1844-9. doi: 10.1038/ajg.2014.147. Epub 2014 Jun 17.
10
Adenoma detection rate and risk of colorectal cancer and death.
N Engl J Med. 2014 Apr 3;370(14):1298-306. doi: 10.1056/NEJMoa1309086.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验