Suppr超能文献

自然语言处理准确计算腺瘤和无蒂锯齿状息肉的检出率。

Natural Language Processing Accurately Calculates Adenoma and Sessile Serrated Polyp Detection Rates.

机构信息

Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

Dig Dis Sci. 2018 Jul;63(7):1794-1800. doi: 10.1007/s10620-018-5078-4. Epub 2018 Apr 26.

Abstract

BACKGROUND

ADR is a widely used colonoscopy quality indicator. Calculation of ADR is labor-intensive and cumbersome using current electronic medical databases. Natural language processing (NLP) is a method used to extract meaning from unstructured or free text data.

AIMS

(1) To develop and validate an accurate automated process for calculation of adenoma detection rate (ADR) and serrated polyp detection rate (SDR) on data stored in widely used electronic health record systems, specifically Epic electronic health record system, Provation endoscopy reporting system, and Sunquest PowerPath pathology reporting system.

METHODS

Screening colonoscopies performed between June 2010 and August 2015 were identified using the Provation reporting tool. An NLP pipeline was developed to identify adenomas and sessile serrated polyps (SSPs) on pathology reports corresponding to these colonoscopy reports. The pipeline was validated using a manual search. Precision, recall, and effectiveness of the natural language processing pipeline were calculated. ADR and SDR were then calculated.

RESULTS

We identified 8032 screening colonoscopies that were linked to 3821 pathology reports (47.6%). The NLP pipeline had an accuracy of 100% for adenomas and 100% for SSPs. Mean total ADR was 29.3% (range 14.7-53.3%); mean male ADR was 35.7% (range 19.7-62.9%); and mean female ADR was 24.9% (range 9.1-51.0%). Mean total SDR was 4.0% (0-9.6%).

CONCLUSIONS

We developed and validated an NLP pipeline that accurately and automatically calculates ADRs and SDRs using data stored in Epic, Provation and Sunquest PowerPath. This NLP pipeline can be used to evaluate colonoscopy quality parameters at both individual and practice levels.

摘要

背景

ADR 是广泛使用的结肠镜检查质量指标。使用当前的电子病历数据库计算 ADR 既繁琐又耗时。自然语言处理 (NLP) 是一种从非结构化或自由文本数据中提取意义的方法。

目的

(1) 开发和验证一种准确的自动化方法,用于计算广泛使用的电子健康记录系统(特别是 Epic 电子健康记录系统、Provation 内窥镜报告系统和 Sunquest PowerPath 病理报告系统)中存储的数据的腺瘤检出率 (ADR) 和锯齿状息肉检出率 (SDR)。

方法

使用 Provation 报告工具确定 2010 年 6 月至 2015 年 8 月期间进行的筛查结肠镜检查。开发了一个 NLP 管道来识别与这些结肠镜报告相对应的病理报告中的腺瘤和无蒂锯齿状息肉 (SSP)。使用手动搜索验证了该管道。计算了自然语言处理管道的精度、召回率和有效性。然后计算 ADR 和 SDR。

结果

我们确定了 8032 例与 3821 份病理报告(47.6%)相关的筛查结肠镜检查。NLP 管道对腺瘤的准确率为 100%,对 SSP 的准确率为 100%。平均总 ADR 为 29.3%(范围 14.7-53.3%);平均男性 ADR 为 35.7%(范围 19.7-62.9%);平均女性 ADR 为 24.9%(范围 9.1-51.0%)。平均总 SDR 为 4.0%(0-9.6%)。

结论

我们开发并验证了一种 NLP 管道,该管道使用 Epic、Provation 和 Sunquest PowerPath 存储的数据准确且自动计算 ADR 和 SDR。该 NLP 管道可用于评估个体和实践层面的结肠镜检查质量参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验