Lin Jianping, Gregg Robert D, Shull Peter B
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Departments of Robotics, Mechanical Engineering, and Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.
IEEE Robot Autom Lett. 2024 Aug;9(8):6848-6855. doi: 10.1109/lra.2024.3414259. Epub 2024 Jun 13.
Emerging task-agnostic control methods offer a promising avenue for versatile assistance in powered exoskeletons without explicit task detection, but typically come with a performance trade-off for specific tasks and/or users. One such approach employs data-driven optimization of an energy shaping controller to provide naturalistic assistance across essential daily tasks with passivity/stability guarantees. This study introduces a novel control method that merges energy shaping with a machine learning-based classifier to deliver optimal support accommodating diverse individual tasks and users. The classifier detects transitions between multiple tasks and gait patterns in order to employ a more optimal, task-agnostic controller based on the weighted sum of multiple optimized energy-shaping controllers. To demonstrate the efficacy of this integrated control strategy, an in-silico assessment is conducted over a range of gait patterns and tasks, including incline walking, stairs ascent/descent, and stand-to-sit transitions. The proposed method surpasses benchmark approaches in 5-fold cross-validation ( ), yielding 93.17 ± 7.39% cosine similarity and 77.92 ± 19.76% variance-accounted-for across tasks and users. These findings highlight the control approach's adaptability in aligning with human joint moments across various tasks.
新兴的任务无关控制方法为助力外骨骼提供了一条有前景的通用辅助途径,无需明确检测任务,但通常会在特定任务和/或用户方面带来性能权衡。一种这样的方法采用能量整形控制器的数据驱动优化,以在保证被动性/稳定性的同时,为基本日常任务提供自然的辅助。本研究介绍了一种新颖的控制方法,该方法将能量整形与基于机器学习的分类器相结合,以提供适应不同个体任务和用户的最优支持。分类器检测多个任务和步态模式之间的转换,以便基于多个优化能量整形控制器的加权和采用更优的、与任务无关的控制器。为了证明这种集成控制策略的有效性,针对一系列步态模式和任务进行了计算机模拟评估,包括上坡行走、上下楼梯以及从站立到坐下的转换。所提出的方法在五折交叉验证中超过了基准方法( ),在各项任务和用户中产生了93.17 ± 7.39%的余弦相似度和77.92 ± 19.76%的方差解释率。这些发现突出了该控制方法在与各种任务中的人体关节力矩对齐方面的适应性。