Suppr超能文献

通过任务/步态分类改进动力外骨骼的任务无关能量整形控制

Improving Task-Agnostic Energy Shaping Control of Powered Exoskeletons with Task/Gait Classification.

作者信息

Lin Jianping, Gregg Robert D, Shull Peter B

机构信息

State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Departments of Robotics, Mechanical Engineering, and Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

IEEE Robot Autom Lett. 2024 Aug;9(8):6848-6855. doi: 10.1109/lra.2024.3414259. Epub 2024 Jun 13.

Abstract

Emerging task-agnostic control methods offer a promising avenue for versatile assistance in powered exoskeletons without explicit task detection, but typically come with a performance trade-off for specific tasks and/or users. One such approach employs data-driven optimization of an energy shaping controller to provide naturalistic assistance across essential daily tasks with passivity/stability guarantees. This study introduces a novel control method that merges energy shaping with a machine learning-based classifier to deliver optimal support accommodating diverse individual tasks and users. The classifier detects transitions between multiple tasks and gait patterns in order to employ a more optimal, task-agnostic controller based on the weighted sum of multiple optimized energy-shaping controllers. To demonstrate the efficacy of this integrated control strategy, an in-silico assessment is conducted over a range of gait patterns and tasks, including incline walking, stairs ascent/descent, and stand-to-sit transitions. The proposed method surpasses benchmark approaches in 5-fold cross-validation ( ), yielding 93.17 ± 7.39% cosine similarity and 77.92 ± 19.76% variance-accounted-for across tasks and users. These findings highlight the control approach's adaptability in aligning with human joint moments across various tasks.

摘要

新兴的任务无关控制方法为助力外骨骼提供了一条有前景的通用辅助途径,无需明确检测任务,但通常会在特定任务和/或用户方面带来性能权衡。一种这样的方法采用能量整形控制器的数据驱动优化,以在保证被动性/稳定性的同时,为基本日常任务提供自然的辅助。本研究介绍了一种新颖的控制方法,该方法将能量整形与基于机器学习的分类器相结合,以提供适应不同个体任务和用户的最优支持。分类器检测多个任务和步态模式之间的转换,以便基于多个优化能量整形控制器的加权和采用更优的、与任务无关的控制器。为了证明这种集成控制策略的有效性,针对一系列步态模式和任务进行了计算机模拟评估,包括上坡行走、上下楼梯以及从站立到坐下的转换。所提出的方法在五折交叉验证中超过了基准方法( ),在各项任务和用户中产生了93.17 ± 7.39%的余弦相似度和77.92 ± 19.76%的方差解释率。这些发现突出了该控制方法在与各种任务中的人体关节力矩对齐方面的适应性。

相似文献

本文引用的文献

2
An Energetic Approach to Task-Invariant Ankle Exoskeleton Control.一种用于任务不变型脚踝外骨骼控制的能量方法。
Rep U S. 2023 Oct;2023:6082-6089. doi: 10.1109/iros55552.2023.10342136. Epub 2023 Dec 13.
3
Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton.用于可反向驱动髋关节外骨骼的最优能量整形控制
Proc Am Control Conf. 2023;2023:2065-2070. doi: 10.23919/acc55779.2023.10155839. Epub 2023 Jul 3.
8
Modeling the Transitional Kinematics Between Variable-Incline Walking and Stair Climbing.模拟可变坡度行走和爬楼梯之间的过渡运动学
IEEE Trans Med Robot Bionics. 2022 Aug;4(3):840-851. doi: 10.1109/tmrb.2022.3185405. Epub 2022 Jun 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验