Suppr超能文献

通过氮掺杂增强介观石墨炔的顺磁性。

Enhanced paramagnetism of mesoscopic graphdiyne by doping with nitrogen.

作者信息

Zhang Mingjia, Wang Xiaoxiong, Sun Huijuan, Wang Ning, Lv Qing, Cui Weiwei, Long Yunze, Huang Changshui

机构信息

Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.

Department of Physics, Qingdao University, Qingdao, 266071, P. R. China.

出版信息

Sci Rep. 2017 Sep 14;7(1):11535. doi: 10.1038/s41598-017-11698-9.

Abstract

The new two-dimensional graphitic material, graphdiyne, has attracted great interest recently due to the superior intrinsic semiconductor properties. Here we investigate the magnetism of pure graphdiyne material and find it demonstrating a remarkable paramagnetic characteristic, which can be attributed to the appearance of special sp-hybridized carbon atoms. On this basis, we further introduce nitrogen with 5.29% N/C ratio into graphdiyne followed by simply annealing in a dopant source and realize a twofold enhancement of saturation moment at 2 K. Associate with the density of states calculation, we investigate the influence of the nitrogen atom doping sites on paramagnetism, and further reveal the important role of doped nitrogen atom on benzene ring in improving local magnetic moment. These results can not only help us deeply understand the intrinsic magnetism of graphdiyne, but also open an efficient way to improve magnetism of graphdiyne by hetero atom doping, like nitrogen doping, which may promote the potential application of graphdiyne in spintronics.

摘要

新型二维石墨材料石墨二炔,因其优异的本征半导体特性,近来备受关注。在此,我们研究了纯石墨二炔材料的磁性,发现其呈现出显著的顺磁特性,这可归因于特殊的sp杂化碳原子的出现。在此基础上,我们进一步以5.29%的N/C比例将氮引入石墨二炔,随后在掺杂源中简单退火,实现了在2 K时饱和磁矩的两倍增强。结合态密度计算,我们研究了氮原子掺杂位点对顺磁性的影响,并进一步揭示了苯环上掺杂氮原子在提高局部磁矩方面的重要作用。这些结果不仅有助于我们深入理解石墨二炔的本征磁性,还为通过杂原子掺杂(如氮掺杂)提高石墨二炔的磁性开辟了一条有效途径,这可能会促进石墨二炔在自旋电子学中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a81/5599548/7f6317d6595b/41598_2017_11698_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验