Suppr超能文献

高氨血症动物模型中多导睡眠图、腺苷及睡眠剥夺代谢反应的异常情况。

Abnormalities in the Polysomnographic, Adenosine and Metabolic Response to Sleep Deprivation in an Animal Model of Hyperammonemia.

作者信息

Marini Selena, Santangeli Olena, Saarelainen Pirjo, Middleton Benita, Chowdhury Namrata, Skene Debra J, Costa Rodolfo, Porkka-Heiskanen Tarja, Montagnese Sara

机构信息

Department of Biology, University of PaduaPadua, Italy.

Department of Physiology, Institute of Biomedicine and Physiology, University of HelsinkiHelsinki, Finland.

出版信息

Front Physiol. 2017 Aug 31;8:636. doi: 10.3389/fphys.2017.00636. eCollection 2017.

Abstract

Patients with liver cirrhosis can develop hyperammonemia and hepatic encephalopathy (HE), accompanied by pronounced daytime sleepiness. Previous studies with healthy volunteers show that experimental increase in blood ammonium levels increases sleepiness and slows the waking electroencephalogram. As ammonium increases adenosine levels , and adenosine is a known regulator of sleep/wake homeostasis, we hypothesized that the sleepiness-inducing effect of ammonium is mediated by adenosine. Eight adult male Wistar rats were fed with an ammonium-enriched diet for 4 weeks; eight rats on standard diet served as controls. Each animal was implanted with electroencephalography/electromyography (EEG/EMG) electrodes and a microdialysis probe. Sleep EEG recording and cerebral microdialysis were carried out at baseline and after 6 h of sleep deprivation. Adenosine and metabolite levels were measured by high-performance liquid chromatography (HPLC) and targeted LC/MS metabolomics, respectively. Baseline adenosine and metabolite levels (12 of 16 amino acids, taurine, t4-hydroxy-proline, and acetylcarnitine) were lower in hyperammonemic animals, while putrescine was higher. After sleep deprivation, hyperammonemic animals exhibited a larger increase in adenosine levels, and a number of metabolites showed a different time-course in the two groups. In both groups the recovery period was characterized by a significant decrease in wakefulness/increase in NREM and REM sleep. However, while control animals exhibited a gradual compensatory effect, hyperammonemic animals showed a significantly shorter recovery phase. In conclusion, the adenosine/metabolite/EEG response to sleep deprivation was modulated by hyperammonemia, suggesting that ammonia affects homeostatic sleep regulation and its metabolic correlates.

摘要

肝硬化患者可出现高氨血症和肝性脑病(HE),并伴有明显的日间嗜睡。此前对健康志愿者的研究表明,实验性增加血铵水平会增加嗜睡感并减慢清醒脑电图。由于铵会增加腺苷水平,而腺苷是已知的睡眠/觉醒稳态调节因子,我们推测铵的嗜睡诱导作用是由腺苷介导的。将八只成年雄性Wistar大鼠喂食富含铵的饮食4周;八只喂食标准饮食的大鼠作为对照。每只动物都植入了脑电图/肌电图(EEG/EMG)电极和微透析探针。在基线和睡眠剥夺6小时后进行睡眠脑电图记录和脑微透析。分别通过高效液相色谱(HPLC)和靶向液相色谱/质谱代谢组学测量腺苷和代谢物水平。高氨血症动物的基线腺苷和代谢物水平(16种氨基酸中的12种、牛磺酸、t4-羟基脯氨酸和乙酰肉碱)较低,而腐胺较高。睡眠剥夺后,高氨血症动物的腺苷水平升高幅度更大,两组中一些代谢物表现出不同的时间进程。两组的恢复期均以清醒显著减少/非快速眼动和快速眼动睡眠增加为特征。然而,虽然对照动物表现出逐渐的代偿作用,但高氨血症动物的恢复期明显较短。总之,高氨血症调节了对睡眠剥夺的腺苷/代谢物/脑电图反应,表明氨会影响稳态睡眠调节及其代谢相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaa0/5583967/fcfcb2c57b57/fphys-08-00636-g0001.jpg

相似文献

2
Induced hyperammonemia may compromise the ability to generate restful sleep in patients with cirrhosis.
Hepatology. 2012 Mar;55(3):869-78. doi: 10.1002/hep.24741. Epub 2012 Jan 19.
3
Progressive reduction of sleep time and quality in rats with hepatic encephalopathy caused by portacaval shunts.
Neuroscience. 2012 Jan 10;201:199-208. doi: 10.1016/j.neuroscience.2011.11.009. Epub 2011 Nov 12.
4
The role of adenosine in the maturation of sleep homeostasis in rats.
J Neurophysiol. 2017 Jan 1;117(1):327-335. doi: 10.1152/jn.00675.2016. Epub 2016 Oct 26.
5
Sleep fragmentation elevates behavioral, electrographic and neurochemical measures of sleepiness.
Neuroscience. 2007 Jun 8;146(4):1462-73. doi: 10.1016/j.neuroscience.2007.03.009. Epub 2007 Apr 18.
8
Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans.
Neuropsychopharmacology. 2004 Oct;29(10):1933-9. doi: 10.1038/sj.npp.1300526.
9
Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor.
J Sleep Res. 2003 Dec;12(4):283-90. doi: 10.1046/j.0962-1105.2003.00367.x.
10
Studies on wakefulness-promoting effect of memantine in rats.
Behav Brain Res. 2010 Jan 20;206(2):274-8. doi: 10.1016/j.bbr.2009.09.025. Epub 2009 Sep 23.

引用本文的文献

1
Microbiota metabolites affect sleep as drivers of brain‑gut communication (Review).
Int J Mol Med. 2025 Sep;56(3). doi: 10.3892/ijmm.2025.5571. Epub 2025 Jul 4.
2
Potential bidirectional communication between the liver and the central circadian clock in MASLD.
NPJ Metab Health Dis. 2025;3(1):15. doi: 10.1038/s44324-025-00058-1. Epub 2025 Apr 9.
4
Chronic sleep loss sensitizes Drosophila melanogaster to nitrogen stress.
Curr Biol. 2023 Apr 24;33(8):1613-1623.e5. doi: 10.1016/j.cub.2023.03.008. Epub 2023 Mar 24.
5
Hyperammonaemia disrupts daily rhythms reversibly by elevating glutamate in the central circadian pacemaker.
Liver Int. 2023 Mar;43(3):673-683. doi: 10.1111/liv.15476. Epub 2022 Nov 21.
6
2021 ISHEN guidelines on animal models of hepatic encephalopathy.
Liver Int. 2021 Jul;41(7):1474-1488. doi: 10.1111/liv.14911. Epub 2021 May 11.
7
Comprehensive Overview of Sleep Disorders in Patients with Chronic Liver Disease.
Brain Sci. 2021 Jan 22;11(2):142. doi: 10.3390/brainsci11020142.
8
A systems genetics resource and analysis of sleep regulation in the mouse.
PLoS Biol. 2018 Aug 9;16(8):e2005750. doi: 10.1371/journal.pbio.2005750. eCollection 2018 Aug.
9
Assessment and Management of Sleep Disturbance in Cirrhosis.
Curr Hepatol Rep. 2018;17(1):52-69. doi: 10.1007/s11901-018-0390-1. Epub 2018 Feb 13.

本文引用的文献

2
Cerebrospinal fluid metabolomics highlights dysregulation of energy metabolism in overt hepatic encephalopathy.
J Hepatol. 2016 Dec;65(6):1120-1130. doi: 10.1016/j.jhep.2016.07.046. Epub 2016 Aug 9.
4
Acute hyperammonaemia induces a sustained decrease in vigilance, which is modulated by caffeine.
Metab Brain Dis. 2015 Feb;30(1):143-9. doi: 10.1007/s11011-014-9590-8. Epub 2014 Jul 24.
6
Effect of sleep deprivation on the human metabolome.
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10761-6. doi: 10.1073/pnas.1402663111. Epub 2014 Jul 7.
8
Branched-chain amino acids in liver diseases.
World J Gastroenterol. 2013 Nov 21;19(43):7620-9. doi: 10.3748/wjg.v19.i43.7620.
9
Sleep homeostasis.
Curr Opin Neurobiol. 2013 Oct;23(5):799-805. doi: 10.1016/j.conb.2013.02.010. Epub 2013 Mar 17.
10
Ammonia-related changes in cerebral electrogenesis in healthy subjects and patients with cirrhosis.
Clin Neurophysiol. 2013 Mar;124(3):492-6. doi: 10.1016/j.clinph.2012.08.014. Epub 2012 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验