Suppr超能文献

在纤维分解梭菌中,双重粘着蛋白-衔接蛋白复合物的结合模式有助于其纤维小体的大小和复杂性。

A dual cohesin-dockerin complex binding mode in Bacteroides cellulosolvens contributes to the size and complexity of its cellulosome.

机构信息

Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, Lisboa, Portugal.

UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.

出版信息

J Biol Chem. 2021 Jan-Jun;296:100552. doi: 10.1016/j.jbc.2021.100552. Epub 2021 Mar 18.

Abstract

The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin-dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role. Thus, type I Coh-Doc complexes are usually responsible for enzyme integration into the cellulosome, while type II Coh-Doc complexes tether the cellulosome to the bacterial wall. In contrast to other known cellulosomes, cohesin types from Bacteroides cellulosolvens, a cellulosome-producing bacterium capable of utilizing cellulose and cellobiose as carbon sources, are reversed for all scaffoldins, i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. It has been previously shown that type I B. cellulosolvens interactions possess a dual-binding mode that adds flexibility to scaffoldin assembly. Herein, we report the structural mechanism of enzyme recruitment into B. cellulosolvens cellulosome and the identification of the molecular determinants of its type II cohesin-dockerin interactions. The results indicate that, unlike other type II complexes, these possess a dual-binding mode of interaction, akin to type I complexes. Therefore, the plasticity of dual-binding mode interactions seems to play a pivotal role in the assembly of B. cellulosolvens cellulosome, which is consistent with its unmatched complexity and size.

摘要

纤维小体是一种复杂的大分子蛋白复合物,通过促进酶协同作用和蛋白质稳定性,集中了许多厌氧微生物的纤维素分解作用。许多碳水化合物加工酶组装成一个大分子多蛋白结构,是由于酶携带的 dockerin 模块与非催化支架蛋白(称为支架蛋白)中重复的 cohesin 模块相互作用的结果。cohesin-dockerin (Coh-Doc) 模块通常根据结构构象和纤维小体作用分为不同类型。因此,I 型 Coh-Doc 复合物通常负责将酶整合到纤维小体中,而 II 型 Coh-Doc 复合物将纤维小体固定在细菌壁上。与其他已知的纤维小体不同,能够利用纤维素和纤维二糖作为碳源的产纤维小体细菌 Bacteroides cellulosolvens 的 cohesin 类型对于所有的支架蛋白都是反转的,即 II 型 cohesin 位于酶整合的主要支架蛋白上,而 I 型 cohesin 位于锚定支架蛋白上。先前已经表明,I 型 B. cellulosolvens 相互作用具有双重结合模式,为支架蛋白组装增加了灵活性。本文报道了酶招募到 B. cellulosolvens 纤维小体中的结构机制,并鉴定了其 II 型 cohesin-dockerin 相互作用的分子决定因素。结果表明,与其他 II 型复合物不同,这些复合物具有类似于 I 型复合物的双重结合模式相互作用。因此,双重结合模式相互作用的可塑性似乎在 B. cellulosolvens 纤维小体的组装中起着关键作用,这与其无与伦比的复杂性和规模一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03aa/8063739/8b25b4779662/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验