Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA.
Division of Cardiology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA.
Theranostics. 2017 Aug 18;7(14):3539-3558. doi: 10.7150/thno.20593. eCollection 2017.
Our knowledge of pluripotent stem cell biology has advanced considerably in the past four decades, but it has yet to deliver on the great promise of regenerative medicine. The slow progress can be mainly attributed to our incomplete understanding of the complex biologic processes regulating the dynamic developmental pathways from pluripotency to fully-differentiated states of functional somatic cells. Much of the difficulty arises from our lack of specific tools to query, or manipulate, the molecular scale circuitry on both single-cell and organismal levels. Fortunately, the last two decades of progress in the field of optogenetics have produced a variety of genetically encoded, light-mediated tools that enable visualization and control of the spatiotemporal regulation of cellular function. The merging of optogenetics and pluripotent stem cell biology could thus be an important step toward realization of the clinical potential of pluripotent stem cells. In this review, we have surveyed available genetically encoded photoactuators and photosensors, a rapidly expanding toolbox, with particular attention to those with utility for studying pluripotent stem cells.
在过去的四十年中,我们对多能干细胞生物学的认识有了很大的提高,但它尚未实现再生医学的巨大承诺。进展缓慢主要归因于我们对调节从多能性到功能体细胞完全分化状态的复杂生物学过程的理解不完整。大部分困难源于我们缺乏特定的工具来查询或操纵单细胞和机体水平上的分子尺度电路。幸运的是,在光遗传学领域过去二十年的进展中,已经产生了多种遗传编码的、光介导的工具,这些工具可以实现细胞功能的时空调节的可视化和控制。因此,光遗传学和多能干细胞生物学的融合可能是实现多能干细胞临床潜力的重要一步。在这篇综述中,我们调查了现有的遗传编码光驱动器和光敏传感器,这是一个快速扩展的工具包,特别关注那些对研究多能干细胞有用的工具。