Suppr超能文献

膀胱癌动物模型的见解:最新进展、挑战与机遇

Insights from animal models of bladder cancer: recent advances, challenges, and opportunities.

作者信息

John Bincy Anu, Said Neveen

机构信息

Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.

Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.

出版信息

Oncotarget. 2017 May 9;8(34):57766-57781. doi: 10.18632/oncotarget.17714. eCollection 2017 Aug 22.

Abstract

Bladder cancer (urothelial cancer of the bladder) is the most common malignancy affecting the urinary system with increasing incidence and mortality. Treatment of bladder cancer has not advanced in the past 30 years. Therefore, there is a crucial unmet need for novel therapies, especially for high grade/stage disease that can only be achieved by preclinical model systems that faithfully recapitulate the human disease. Animal models are essential elements in bladder cancer research to comprehensively study the multistep cascades of carcinogenesis, progression and metastasis. They allow for the investigation of premalignant phases of the disease that are not clinically encountered. They can be useful for identification of diagnostic and prognostic biomarkers for disease progression and for preclinical identification and validation of therapeutic targets/candidates, advancing translation of basic research to clinic. This review summarizes the latest advances in the currently available bladder cancer animal models, their translational potential, merits and demerits, and the prevalent tumor evaluation modalities. Thereby, findings from these model systems would provide valuable information that can help researchers and clinicians utilize the model that best answers their research questions.

摘要

膀胱癌(膀胱尿路上皮癌)是影响泌尿系统的最常见恶性肿瘤,其发病率和死亡率呈上升趋势。在过去30年里,膀胱癌的治疗没有取得进展。因此,对于新型疗法存在关键的未满足需求,特别是对于高级别/晚期疾病,这只能通过忠实地重现人类疾病的临床前模型系统来实现。动物模型是膀胱癌研究中的重要元素,可全面研究致癌、进展和转移的多步骤级联反应。它们有助于研究临床上未遇到的疾病癌前阶段。它们可用于识别疾病进展的诊断和预后生物标志物,以及用于治疗靶点/候选物的临床前识别和验证,推动基础研究向临床转化。本综述总结了目前可用的膀胱癌动物模型的最新进展、它们的转化潜力、优缺点以及普遍的肿瘤评估方式。因此,这些模型系统的研究结果将提供有价值的信息,有助于研究人员和临床医生使用最能回答其研究问题的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669c/5593682/e65581ffc2b5/oncotarget-08-57766-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验