Suppr超能文献

蛋氨酸亚砜含量及蛋氨酸亚砜还原酶活性的监测

Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity.

作者信息

Tarrago Lionel, Oheix Emmanuel, Péterfi Zalán, Gladyshev Vadim N

机构信息

Laboratoire de Bioénergétique Cellulaire, Institut de Biosciences et Biotechnologies Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 13108, Saint-Paul-lès-Durance, France.

UMR 7265, Centre National de Recherche Scientifique, Saint-Paul-lès-Durance, France.

出版信息

Methods Mol Biol. 2018;1661:285-299. doi: 10.1007/978-1-4939-7258-6_20.

Abstract

The sulfur-containing amino acid methionine (Met) plays critical roles in protein synthesis, methylation, and sulfur metabolism. Both in its free form and in the form of an amino acid residue, it can be oxidized to the R and S diastereomers of methionine sulfoxide (MetO). Organisms evolved methionine sulfoxide reductases (MSRs) to reduce MetO to Met, with the MSRs type A (MSRA) and type B (MSRB) being specific for the S and R forms of MetO, respectively. In mammals, the selenoprotein MSRB1 plays an important protein repair function, and its expression is tightly regulated by dietary selenium. In this chapter, we describe a protocol for determining the concentration of protein-based Met-R-O and its analysis in HEK293 cells using a genetically encoded ratiometric fluorescent biosensor MetROx. We also describe the procedure for quantifying MSR activities in cell extracts using specific substrates and a reverse phase HPLC-based method.

摘要

含硫氨基酸甲硫氨酸(Met)在蛋白质合成、甲基化和硫代谢中起着关键作用。无论是以游离形式还是以氨基酸残基的形式,它都可以被氧化为甲硫氨酸亚砜(MetO)的R型和S型非对映异构体。生物体进化出甲硫氨酸亚砜还原酶(MSR),将MetO还原为Met,其中A型甲硫氨酸亚砜还原酶(MSRA)和B型甲硫氨酸亚砜还原酶(MSRB)分别对MetO的S型和R型具有特异性。在哺乳动物中,硒蛋白MSRB1发挥着重要的蛋白质修复功能,其表达受到膳食硒的严格调控。在本章中,我们描述了一种使用基因编码的比率荧光生物传感器MetROx测定HEK293细胞中基于蛋白质的Met-R-O浓度及其分析的方法。我们还描述了使用特定底物和基于反相高效液相色谱的方法定量细胞提取物中MSR活性的步骤。

相似文献

1
Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity.
Methods Mol Biol. 2018;1661:285-299. doi: 10.1007/978-1-4939-7258-6_20.
4
Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes.
Free Radic Biol Med. 2021 Jun;169:187-215. doi: 10.1016/j.freeradbiomed.2021.04.013. Epub 2021 Apr 16.
6
The methionine sulfoxide reduction system: selenium utilization and methionine sulfoxide reductase enzymes and their functions.
Antioxid Redox Signal. 2013 Sep 20;19(9):958-69. doi: 10.1089/ars.2012.5081. Epub 2013 Jan 22.
7
Functional comparison of methionine sulphoxide reductase A and B in Corynebacterium glutamicum.
J Gen Appl Microbiol. 2017 Nov 17;63(5):280-286. doi: 10.2323/jgam.2017.01.005. Epub 2017 Sep 12.
8
The selenoprotein methionine sulfoxide reductase B1 (MSRB1).
Free Radic Biol Med. 2022 Oct;191:228-240. doi: 10.1016/j.freeradbiomed.2022.08.043. Epub 2022 Sep 7.
9
Roles of methionine suldfoxide reductases in antioxidant defense, protein regulation and survival.
Curr Pharm Des. 2005;11(11):1451-7. doi: 10.2174/1381612053507846.
10
Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases.
Mol Biol Cell. 2004 Mar;15(3):1055-64. doi: 10.1091/mbc.e03-08-0629. Epub 2003 Dec 29.

引用本文的文献

1
Generation of Recombinant Mammalian Selenoproteins through Genetic Code Expansion with Photocaged Selenocysteine.
ACS Chem Biol. 2020 Jun 19;15(6):1535-1540. doi: 10.1021/acschembio.0c00147. Epub 2020 May 5.
2
Detection, identification, and quantification of oxidative protein modifications.
J Biol Chem. 2019 Dec 20;294(51):19683-19708. doi: 10.1074/jbc.REV119.006217. Epub 2019 Oct 31.

本文引用的文献

2
Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons.
Nature. 2015 Dec 17;528(7582):409-412. doi: 10.1038/nature15764. Epub 2015 Dec 7.
3
The ImageJ ecosystem: An open platform for biomedical image analysis.
Mol Reprod Dev. 2015 Jul-Aug;82(7-8):518-29. doi: 10.1002/mrd.22489. Epub 2015 Jul 7.
4
Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors.
Nat Chem Biol. 2015 May;11(5):332-8. doi: 10.1038/nchembio.1787. Epub 2015 Mar 23.
5
MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation.
Mol Cell. 2013 Aug 8;51(3):397-404. doi: 10.1016/j.molcel.2013.06.019. Epub 2013 Aug 1.
7
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.
8
Methionine sulfoxide reductases preferentially reduce unfolded oxidized proteins and protect cells from oxidative protein unfolding.
J Biol Chem. 2012 Jul 13;287(29):24448-59. doi: 10.1074/jbc.M112.374520. Epub 2012 May 24.
9
Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.
Cell Signal. 2012 May;24(5):981-90. doi: 10.1016/j.cellsig.2012.01.008. Epub 2012 Jan 20.
10
Methionine sulfoxide reductase B1 (MsrB1) recovers TRPM6 channel activity during oxidative stress.
J Biol Chem. 2010 Aug 20;285(34):26081-7. doi: 10.1074/jbc.M110.103655. Epub 2010 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验