Gennaris Alexandra, Ezraty Benjamin, Henry Camille, Agrebi Rym, Vergnes Alexandra, Oheix Emmanuel, Bos Julia, Leverrier Pauline, Espinosa Leon, Szewczyk Joanna, Vertommen Didier, Iranzo Olga, Collet Jean-François, Barras Frédéric
WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium.
de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium.
Nature. 2015 Dec 17;528(7582):409-412. doi: 10.1038/nature15764. Epub 2015 Dec 7.
The reactive species of oxygen and chlorine damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine is converted to methionine sulfoxide, which can cause a loss of biological activity. To rescue proteins with methionine sulfoxide residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts. Here we report the identification of an enzymatic system, MsrPQ, repairing proteins containing methionine sulfoxide in the bacterial cell envelope, a compartment particularly exposed to the reactive species of oxygen and chlorine generated by the host defence mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a haem-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid, a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both rectus (R-) and sinister (S-) diastereoisomers of methionine sulfoxide, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting methionine residues from oxidation should prompt a search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum.
氧和氯的活性物质会破坏细胞成分,有可能导致细胞死亡。在蛋白质中,含硫氨基酸甲硫氨酸会转化为甲硫氨酸亚砜,这可能会导致生物活性丧失。为了挽救含有甲硫氨酸亚砜残基的蛋白质,活细胞在包括细胞质、线粒体和叶绿体在内的大多数亚细胞区室中表达甲硫氨酸亚砜还原酶(Msrs)。在这里,我们报告了一种酶系统MsrPQ的鉴定,该系统可修复细菌细胞膜中含有甲硫氨酸亚砜的蛋白质,细胞膜是一个特别容易受到宿主防御机制产生的氧和氯活性物质影响的区室。MsrP是一种钼酶,MsrQ是一种血红素结合膜蛋白,在包括主要人类病原体在内的革兰氏阴性细菌中广泛保守。MsrPQ的合成由次氯酸诱导,次氯酸是中性粒细胞释放的一种强大抗菌剂。一致的是,MsrPQ对于在漂白剂胁迫下维持细胞膜完整性至关重要,可从甲硫氨酸氧化中挽救一系列结构不相关的周质蛋白,包括主要的周质伴侣蛋白SurA。对于这项活性,MsrPQ利用呼吸链中的电子,这代表了一种将还原当量导入细菌细胞膜的新机制。MsrPQ的一个显著特征是它能够还原甲硫氨酸亚砜的直链(R-)和左旋(S-)非对映异构体,使得这种氧化还原酶复合物在功能上不同于先前鉴定的Msrs。发现一大类细菌含有单一的、非立体特异性的酶复合物,可完全保护甲硫氨酸残基不被氧化,这应该促使人们在包括内质网在内的真核亚细胞氧化区室中寻找类似的系统。