Suppr超能文献

海藻糖特异性转运蛋白LpqY-SugABC是耻垢分枝杆菌中海藻糖类似物抗菌和抗生物膜活性所必需的。

The trehalose-specific transporter LpqY-SugABC is required for antimicrobial and anti-biofilm activity of trehalose analogues in Mycobacterium smegmatis.

作者信息

Wolber Jeffrey M, Urbanek Bailey L, Meints Lisa M, Piligian Brent F, Lopez-Casillas Irene C, Zochowski Kailey M, Woodruff Peter J, Swarts Benjamin M

机构信息

Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, United States.

Department of Chemistry, University of Southern Maine, Portland, ME 04104, United States.

出版信息

Carbohydr Res. 2017 Oct 10;450:60-66. doi: 10.1016/j.carres.2017.08.003. Epub 2017 Aug 9.

Abstract

Mycobacteria, including the bacterial pathogen that causes human tuberculosis, possess distinctive pathways for synthesizing and utilizing the non-mammalian disaccharide trehalose. Trehalose metabolism is essential for mycobacterial viability and has been linked to in vitro biofilm formation, which may bear relevance to in vivo drug tolerance. Previous research has shown that some trehalose analogues bearing modifications at the 6-position inhibit growth of various mycobacterial species. In this work, 2-, 5-, and 6-position-modified trehalose analogues were synthesized using our previously reported one-step chemoenzymatic method and shown to inhibit growth and biofilm formation in the two-to three-digit micromolar range in Mycobacterium smegmatis. The trehalose-specific ABC transporter LpqY-SugABC was essential for antimicrobial and anti-biofilm activity, suggesting that inhibition by monosubstituted trehalose analogues requires cellular uptake and does not proceed via direct action on extracellular targets such as antigen 85 acyltransferases or trehalose dimycolate hydrolase. Although the potency of the described compounds in in vitro growth and biofilm assays is moderate, this study reports the first trehalose-based mycobacterial biofilm inhibitors and reinforces the concept of exploiting unique sugar uptake pathways to deliver inhibitors and other chemical cargo to mycobacteria.

摘要

分枝杆菌,包括导致人类结核病的细菌病原体,拥有合成和利用非哺乳动物双糖海藻糖的独特途径。海藻糖代谢对于分枝杆菌的生存能力至关重要,并且与体外生物膜形成有关,这可能与体内药物耐受性相关。先前的研究表明,一些在6位带有修饰的海藻糖类似物可抑制各种分枝杆菌的生长。在这项工作中,使用我们先前报道的一步化学酶法合成了在2位、5位和6位修饰的海藻糖类似物,并显示它们在耻垢分枝杆菌中以两到三位数的微摩尔浓度范围抑制生长和生物膜形成。海藻糖特异性ABC转运蛋白LpqY-SugABC对抗菌和抗生物膜活性至关重要,这表明单取代海藻糖类似物的抑制作用需要细胞摄取,而不是通过直接作用于细胞外靶点,如抗原85酰基转移酶或海藻糖二霉菌酸水解酶。尽管所描述的化合物在体外生长和生物膜测定中的效力适中,但本研究报道了第一种基于海藻糖的分枝杆菌生物膜抑制剂,并强化了利用独特的糖摄取途径将抑制剂和其他化学物质输送到分枝杆菌的概念。

相似文献

2
3
Structural basis of trehalose recognition by the mycobacterial LpqY-SugABC transporter.
J Biol Chem. 2021 Jan-Jun;296:100307. doi: 10.1016/j.jbc.2021.100307. Epub 2021 Jan 19.
4
Molecular recognition of trehalose and trehalose analogues by LpqY-SugABC.
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2307625120. doi: 10.1073/pnas.2307625120. Epub 2023 Aug 21.
5
Deoxyfluoro-d-trehalose (FDTre) analogues as potential PET probes for imaging mycobacterial infection.
Org Biomol Chem. 2016 Sep 28;14(36):8598-609. doi: 10.1039/c6ob01734g. Epub 2016 Aug 25.
6
Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis.
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21761-6. doi: 10.1073/pnas.1014642108. Epub 2010 Nov 30.
7
Structural basis of trehalose recycling by the ABC transporter LpqY-SugABC.
Sci Adv. 2020 Oct 30;6(44). doi: 10.1126/sciadv.abb9833. Print 2020 Oct.
8
Structural insights into trehalose capture and translocation by mycobacterial LpqY-SugABC.
Structure. 2023 Oct 5;31(10):1158-1165.e3. doi: 10.1016/j.str.2023.07.014. Epub 2023 Aug 23.
9
10
Modulation of Trehalose Dimycolate and Immune System by Rv0774c Protein Enhanced the Intracellular Survival of in Human Macrophages Cell Line.
Front Cell Infect Microbiol. 2017 Jun 30;7:289. doi: 10.3389/fcimb.2017.00289. eCollection 2017.

引用本文的文献

1
Synthesis and evaluation of Trehalose-Pks13 inhibitor conjugates targeting mycobacteria.
Carbohydr Res. 2025 Jul;553:109506. doi: 10.1016/j.carres.2025.109506. Epub 2025 May 3.
2
Effects of Trehalose on Halitosis: A Randomized Cross-Over Clinical Trial.
Healthcare (Basel). 2025 Mar 13;13(6):619. doi: 10.3390/healthcare13060619.
3
Mycobacterial Biofilm: Mechanisms, Clinical Problems, and Treatments.
Int J Mol Sci. 2024 Jul 16;25(14):7771. doi: 10.3390/ijms25147771.
4
Intracellular Protective Functions and Therapeutical Potential of Trehalose.
Molecules. 2024 May 1;29(9):2088. doi: 10.3390/molecules29092088.
5
Targeting Persistence through Inhibition of the Trehalose Catalytic Shift.
ACS Infect Dis. 2024 Apr 12;10(4):1391-1404. doi: 10.1021/acsinfecdis.4c00138. Epub 2024 Mar 14.
6
Chemical remodeling of the mycomembrane with chain-truncated lipids sensitizes mycobacteria to rifampicin.
Chem Commun (Camb). 2023 Nov 21;59(93):13859-13862. doi: 10.1039/d3cc02364h.
7
Molecular recognition of trehalose and trehalose analogues by LpqY-SugABC.
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2307625120. doi: 10.1073/pnas.2307625120. Epub 2023 Aug 21.
8
Azide-Masked Fluorescence Turn-On Probe for Imaging Mycobacteria.
JACS Au. 2023 Mar 27;3(4):1017-1028. doi: 10.1021/jacsau.2c00449. eCollection 2023 Apr 24.
9
Transcriptomic and Proteomic Analysis of Responding to Acidic pH and Hydrogen Peroxide Stress.
Microorganisms. 2023 Mar 8;11(3):695. doi: 10.3390/microorganisms11030695.
10
Targeting Metabolism with Next-Generation Insecticides.
Viruses. 2023 Feb 8;15(2):469. doi: 10.3390/v15020469.

本文引用的文献

1
Tailoring Trehalose for Biomedical and Biotechnological Applications.
Pure Appl Chem. 2017 Sep;89(9):1223-1249. doi: 10.1515/pac-2016-1025. Epub 2017 Jan 11.
3
MmpL3 is the flippase for mycolic acids in mycobacteria.
Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):7993-7998. doi: 10.1073/pnas.1700062114. Epub 2017 Jul 11.
4
Deoxyfluoro-d-trehalose (FDTre) analogues as potential PET probes for imaging mycobacterial infection.
Org Biomol Chem. 2016 Sep 28;14(36):8598-609. doi: 10.1039/c6ob01734g. Epub 2016 Aug 25.
5
New Insights into the Mycolate-Containing Compound Biosynthesis and Transport in Mycobacteria.
Trends Microbiol. 2016 Sep;24(9):725-738. doi: 10.1016/j.tim.2016.04.009. Epub 2016 Jun 3.
6
Trehalose Polyphleates Are Produced by a Glycolipid Biosynthetic Pathway Conserved across Phylogenetically Distant Mycobacteria.
Cell Chem Biol. 2016 Feb 18;23(2):278-289. doi: 10.1016/j.chembiol.2015.11.013. Epub 2016 Jan 28.
7
Targeting the trehalose utilization pathways of .
Medchemcomm. 2016;7(1):69-85. doi: 10.1039/C5MD00376H. Epub 2015 Oct 16.
8
Genetics of Mycobacterial Trehalose Metabolism.
Microbiol Spectr. 2014 Jun;2(3). doi: 10.1128/microbiolspec.MGM2-0002-2013.
9
The polyketide synthase Pks13 catalyzes a novel mechanism of lipid transfer in mycobacteria.
Chem Biol. 2014 Dec 18;21(12):1660-9. doi: 10.1016/j.chembiol.2014.10.011. Epub 2014 Nov 26.
10
Chemoenzymatic synthesis of trehalose analogues: rapid access to chemical probes for investigating mycobacteria.
Chembiochem. 2014 Sep 22;15(14):2066-70. doi: 10.1002/cbic.201402288. Epub 2014 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验