Wolber Jeffrey M, Urbanek Bailey L, Meints Lisa M, Piligian Brent F, Lopez-Casillas Irene C, Zochowski Kailey M, Woodruff Peter J, Swarts Benjamin M
Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, United States.
Department of Chemistry, University of Southern Maine, Portland, ME 04104, United States.
Carbohydr Res. 2017 Oct 10;450:60-66. doi: 10.1016/j.carres.2017.08.003. Epub 2017 Aug 9.
Mycobacteria, including the bacterial pathogen that causes human tuberculosis, possess distinctive pathways for synthesizing and utilizing the non-mammalian disaccharide trehalose. Trehalose metabolism is essential for mycobacterial viability and has been linked to in vitro biofilm formation, which may bear relevance to in vivo drug tolerance. Previous research has shown that some trehalose analogues bearing modifications at the 6-position inhibit growth of various mycobacterial species. In this work, 2-, 5-, and 6-position-modified trehalose analogues were synthesized using our previously reported one-step chemoenzymatic method and shown to inhibit growth and biofilm formation in the two-to three-digit micromolar range in Mycobacterium smegmatis. The trehalose-specific ABC transporter LpqY-SugABC was essential for antimicrobial and anti-biofilm activity, suggesting that inhibition by monosubstituted trehalose analogues requires cellular uptake and does not proceed via direct action on extracellular targets such as antigen 85 acyltransferases or trehalose dimycolate hydrolase. Although the potency of the described compounds in in vitro growth and biofilm assays is moderate, this study reports the first trehalose-based mycobacterial biofilm inhibitors and reinforces the concept of exploiting unique sugar uptake pathways to deliver inhibitors and other chemical cargo to mycobacteria.
分枝杆菌,包括导致人类结核病的细菌病原体,拥有合成和利用非哺乳动物双糖海藻糖的独特途径。海藻糖代谢对于分枝杆菌的生存能力至关重要,并且与体外生物膜形成有关,这可能与体内药物耐受性相关。先前的研究表明,一些在6位带有修饰的海藻糖类似物可抑制各种分枝杆菌的生长。在这项工作中,使用我们先前报道的一步化学酶法合成了在2位、5位和6位修饰的海藻糖类似物,并显示它们在耻垢分枝杆菌中以两到三位数的微摩尔浓度范围抑制生长和生物膜形成。海藻糖特异性ABC转运蛋白LpqY-SugABC对抗菌和抗生物膜活性至关重要,这表明单取代海藻糖类似物的抑制作用需要细胞摄取,而不是通过直接作用于细胞外靶点,如抗原85酰基转移酶或海藻糖二霉菌酸水解酶。尽管所描述的化合物在体外生长和生物膜测定中的效力适中,但本研究报道了第一种基于海藻糖的分枝杆菌生物膜抑制剂,并强化了利用独特的糖摄取途径将抑制剂和其他化学物质输送到分枝杆菌的概念。