Suppr超能文献

CRISPR/Cas9系统在癌基因成瘾性癌症类型中的治疗潜力:以病毒驱动的癌症作为模型系统

The Therapeutic Potential of CRISPR/Cas9 Systems in Oncogene-Addicted Cancer Types: Virally Driven Cancers as a Model System.

作者信息

Jubair Luqman, McMillan Nigel A J

机构信息

School of Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia.

School of Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; Diamantina Institute, University of Queensland, Brisbane St. Lucia, QLD 4072, Australia.

出版信息

Mol Ther Nucleic Acids. 2017 Sep 15;8:56-63. doi: 10.1016/j.omtn.2017.06.006. Epub 2017 Jun 12.

Abstract

The field of gene editing is undergoing unprecedented growth. The first ex vivo human clinical trial in China started in 2016, more than 1000 US patents have been filed, and there is exponential growth in publications. The ability to edit genes with high fidelity is promising for the development of new treatments for a range of diseases, particularly inherited conditions, infectious diseases, and cancers. For cancer, a major issue is the identification of driver mutations and oncogenes to target for therapeutic effect, and this requires the development of robust models with which to prove their efficacy. The challenge is that there is rarely a single critical gene. However, virally driven cancers, in which cells are addicted to the expression of a single viral oncogene in some cases, may serve as model systems for CRISPR/Cas therapies, as they did for RNAi. These models and systems offer an excellent opportunity to test both preclinical models and clinical conditions to examine the effectiveness of gene editing, and here we review the options and offer a way forward.

摘要

基因编辑领域正在经历前所未有的发展。中国首个体外人体临床试验于2016年启动,已提交1000多项美国专利,相关出版物呈指数级增长。高保真编辑基因的能力有望推动一系列疾病新疗法的开发,尤其是遗传性疾病、传染病和癌症。对于癌症而言,一个主要问题是识别驱动突变和致癌基因以实现治疗效果,这需要开发强大的模型来证明其疗效。挑战在于很少存在单一关键基因。然而,在某些情况下细胞对单一病毒致癌基因的表达成瘾的病毒驱动型癌症,可能会像对RNA干扰那样,作为CRISPR/Cas疗法的模型系统。这些模型和系统为测试临床前模型和临床状况以检验基因编辑的有效性提供了绝佳机会,在此我们回顾各种选择并提出前进方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a61/5485762/85aae06245fa/gr1.jpg

相似文献

1
The Therapeutic Potential of CRISPR/Cas9 Systems in Oncogene-Addicted Cancer Types: Virally Driven Cancers as a Model System.
Mol Ther Nucleic Acids. 2017 Sep 15;8:56-63. doi: 10.1016/j.omtn.2017.06.006. Epub 2017 Jun 12.
2
Systemic Delivery of CRISPR/Cas9 Targeting HPV Oncogenes Is Effective at Eliminating Established Tumors.
Mol Ther. 2019 Dec 4;27(12):2091-2099. doi: 10.1016/j.ymthe.2019.08.012. Epub 2019 Aug 29.
3
Oncogenic Human Papillomavirus: Application of CRISPR/Cas9 Therapeutic Strategies for Cervical Cancer.
Cell Physiol Biochem. 2017;44(6):2455-2466. doi: 10.1159/000486168. Epub 2017 Dec 18.
4
5
Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.
J Control Release. 2017 Nov 28;266:17-26. doi: 10.1016/j.jconrel.2017.09.012. Epub 2017 Sep 11.
6
CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review.
PLoS One. 2019 Feb 22;14(2):e0212198. doi: 10.1371/journal.pone.0212198. eCollection 2019.
7
CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential.
J Control Release. 2016 Dec 28;244(Pt B):139-148. doi: 10.1016/j.jconrel.2016.08.002. Epub 2016 Aug 4.
8
CRISPR-Cas9 therapies in experimental mouse models of cancer.
Future Oncol. 2018 Aug;14(20):2083-2095. doi: 10.2217/fon-2018-0028. Epub 2018 Jul 20.
9
CRISPR/Cas9-mediated noncoding RNA editing in human cancers.
RNA Biol. 2018 Jan 2;15(1):35-43. doi: 10.1080/15476286.2017.1391443. Epub 2017 Nov 9.
10
Therapeutic potential of combined viral transduction and CRISPR/Cas9 gene editing in treating neurodegenerative diseases.
Neurol Sci. 2018 Nov;39(11):1827-1835. doi: 10.1007/s10072-018-3521-0. Epub 2018 Aug 3.

引用本文的文献

1
Let's make it personal: CRISPR tools in manipulating cell death pathways for cancer treatment.
Cell Biol Toxicol. 2024 Jul 29;40(1):61. doi: 10.1007/s10565-024-09907-z.
2
Research Progress on Gene Editing Based on Nano-Drug Delivery Vectors for Tumor Therapy.
Front Bioeng Biotechnol. 2022 Mar 28;10:873369. doi: 10.3389/fbioe.2022.873369. eCollection 2022.
3
New insights on CRISPR/Cas9-based therapy for breast Cancer.
Genes Environ. 2021 Apr 29;43(1):15. doi: 10.1186/s41021-021-00188-0.
4
Gene surgery: Potential applications for human diseases.
EXCLI J. 2019 Oct 11;18:908-930. doi: 10.17179/excli2019-1833. eCollection 2019.
5
TGFBI Promotes Tumor Growth and is Associated with Poor Prognosis in Oral Squamous Cell Carcinoma.
J Cancer. 2019 Aug 27;10(20):4902-4912. doi: 10.7150/jca.29958. eCollection 2019.
7
Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care.
ACS Nano. 2018 Jan 23;12(1):24-43. doi: 10.1021/acsnano.7b05108. Epub 2017 Dec 22.

本文引用的文献

1
Unexpected mutations after CRISPR-Cas9 editing in vivo.
Nat Methods. 2017 May 30;14(6):547-548. doi: 10.1038/nmeth.4293.
2
CRISPR gene-editing tested in a person for the first time.
Nature. 2016 Nov 24;539(7630):479. doi: 10.1038/nature.2016.20988.
3
Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity.
Mol Cell. 2016 Aug 4;63(3):355-70. doi: 10.1016/j.molcel.2016.07.004.
4
CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections.
PLoS Pathog. 2016 Jun 30;12(6):e1005701. doi: 10.1371/journal.ppat.1005701. eCollection 2016 Jun.
5
Short interfering RNA induced generation and translation of stable 5' mRNA cleavage intermediates.
Biochim Biophys Acta. 2016 Aug;1859(8):1034-42. doi: 10.1016/j.bbagrm.2016.06.005. Epub 2016 Jun 16.
6
Recent Advances in Genome Editing Using CRISPR/Cas9.
Front Plant Sci. 2016 May 24;7:703. doi: 10.3389/fpls.2016.00703. eCollection 2016.
7
Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
Nature. 2016 May 5;533(7601):125-9. doi: 10.1038/nature17664. Epub 2016 Apr 27.
8
Systemic delivery of siRNA by actively targeted polyion complex micelles for silencing the E6 and E7 human papillomavirus oncogenes.
J Control Release. 2016 Jun 10;231:29-37. doi: 10.1016/j.jconrel.2016.03.016. Epub 2016 Mar 12.
9
Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases.
Cell Rep. 2016 Mar 8;14(9):2263-2272. doi: 10.1016/j.celrep.2016.02.018. Epub 2016 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验