Suppr超能文献

软管状微流控技术在二维和三维应用中的应用。

Soft tubular microfluidics for 2D and 3D applications.

机构信息

Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117546.

Mechanobiology Institute, National University of Singapore, Singapore 117411.

出版信息

Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10590-10595. doi: 10.1073/pnas.1712195114. Epub 2017 Sep 18.

Abstract

Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

摘要

微流控技术一直是许多应用的关键组成部分,包括生物医学设备、化学处理器、微执行器,甚至可穿戴设备。这项技术依赖于软光刻制造,需要洁净室设施。尽管这种方法很流行,但它既昂贵又耗费人力。此外,目前的常规微流控芯片无法重新配置,使得设计的迭代非常耗时且昂贵。为了解决微加工的这些固有缺陷,我们提出了一种替代方案,用于快速原型制作微流控元件,如微管、阀门和泵。此外,我们展示了如何将具有各种长度和横截面的微管模块化地连接到 2D 和 3D 微流控系统中,以实现功能应用。我们引入了一种简单的制造方法,即用弹性微管作为微流控器件的基本构建块。这些微管是透明的、生物兼容的、高度可变形的,可以定制成各种尺寸和横截面几何形状。通过将微管配置成确定的几何形状,我们可以在不影响其精度和功能的情况下,快速、低成本地形成微流控组件。我们展示了可配置的 2D 和 3D 微流控系统,用于不同领域的应用。这些应用包括微粒子分选、微液滴生成、生物催化微马达、摩擦电传感器,甚至可穿戴传感器。我们的方法称为软管状微流控,为缺乏专业知识和清洁室设施的用户提供了一种简单、更便宜、更快的解决方案,用于设计和快速构建各种应用和需求的微流控设备。

相似文献

1
Soft tubular microfluidics for 2D and 3D applications.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10590-10595. doi: 10.1073/pnas.1712195114. Epub 2017 Sep 18.
2
Biomedical microfluidic devices by using low-cost fabrication techniques: A review.
J Biomech. 2016 Jul 26;49(11):2280-2292. doi: 10.1016/j.jbiomech.2015.11.031. Epub 2015 Nov 27.
4
Materials for microfluidic chip fabrication.
Acc Chem Res. 2013 Nov 19;46(11):2396-406. doi: 10.1021/ar300314s. Epub 2013 Jun 11.
5
6
Rapid and inexpensive microfluidic electrode integration with conductive ink.
Lab Chip. 2020 Oct 13;20(20):3690-3695. doi: 10.1039/d0lc00763c.
7
3D-printed microfluidic devices.
Biofabrication. 2016 Jun 20;8(2):022001. doi: 10.1088/1758-5090/8/2/022001.
8
A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing.
Micromachines (Basel). 2016 Aug 8;7(8):139. doi: 10.3390/mi7080139.
9
A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial.
Anal Chim Acta. 2020 Oct 23;1135:150-174. doi: 10.1016/j.aca.2020.09.013. Epub 2020 Sep 11.

引用本文的文献

1
Point of care sepsis diagnosis: Exploring microfluidic techniques for sample preparation, biomarker isolation, and detection.
Biomicrofluidics. 2025 Jul 1;19(4):041502. doi: 10.1063/5.0248096. eCollection 2025 Jul.
2
Gamifying Resistance Training with Wearable Sensors.
Sensors (Basel). 2025 Apr 23;25(9):2662. doi: 10.3390/s25092662.
4
Twisted fiber microfluidics: a cutting-edge approach to 3D spiral devices.
Microsyst Nanoeng. 2024 Jan 22;10:14. doi: 10.1038/s41378-023-00642-9. eCollection 2024.
5
Penile Erection Morphometry: The Need for a Novel Approach.
World J Mens Health. 2024 Oct;42(4):667-680. doi: 10.5534/wjmh.230179. Epub 2024 Jan 2.
6
A Sensorised Glove to Detect Scratching for Patients with Atopic Dermatitis.
Sensors (Basel). 2023 Dec 12;23(24):9782. doi: 10.3390/s23249782.
7
Engineering Organ-on-a-Chip Systems for Vascular Diseases.
Arterioscler Thromb Vasc Biol. 2023 Dec;43(12):2241-2255. doi: 10.1161/ATVBAHA.123.318233. Epub 2023 Oct 12.
8
Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere.
Exploration (Beijing). 2021 Dec 17;1(3):20210036. doi: 10.1002/EXP.20210036. eCollection 2021 Dec.
9
Technology Roadmap for Flexible Sensors.
ACS Nano. 2023 Mar 28;17(6):5211-5295. doi: 10.1021/acsnano.2c12606. Epub 2023 Mar 9.
10
Wearable Soft Microtube Sensors for Quantitative Home-Based Erectile Dysfunction Monitoring.
Sensors (Basel). 2022 Nov 30;22(23):9344. doi: 10.3390/s22239344.

本文引用的文献

1
Soft Lithography.
Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.
2
Self-propelled supramolecular nanomotors with temperature-responsive speed regulation.
Nat Chem. 2017 May;9(5):480-486. doi: 10.1038/nchem.2674. Epub 2016 Dec 12.
3
Stretchable and Soft Electronics using Liquid Metals.
Adv Mater. 2017 Jul;29(27). doi: 10.1002/adma.201606425. Epub 2017 Apr 18.
4
Wearable tactile sensor based on flexible microfluidics.
Lab Chip. 2016 Aug 16;16(17):3244-50. doi: 10.1039/c6lc00579a.
5
3D-printing technologies for electrochemical applications.
Chem Soc Rev. 2016 May 21;45(10):2740-55. doi: 10.1039/c5cs00714c. Epub 2016 Apr 6.
6
Elastomeric free-form blood vessels for interconnecting organs on chip systems.
Lab Chip. 2016 Apr 26;16(9):1579-86. doi: 10.1039/c6lc00001k.
7
Self-Powered Triboelectric Nanosensor for Microfluidics and Cavity-Confined Solution Chemistry.
ACS Nano. 2015 Nov 24;9(11):11056-63. doi: 10.1021/acsnano.5b04486. Epub 2015 Oct 26.
8
3D-printed microfluidic automation.
Lab Chip. 2015 Apr 21;15(8):1934-41. doi: 10.1039/c5lc00126a.
9
Discrete elements for 3D microfluidics.
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15013-8. doi: 10.1073/pnas.1414764111. Epub 2014 Sep 22.
10
Microfluidic organs-on-chips.
Nat Biotechnol. 2014 Aug;32(8):760-72. doi: 10.1038/nbt.2989.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验