School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Anal Chim Acta. 2020 Oct 23;1135:150-174. doi: 10.1016/j.aca.2020.09.013. Epub 2020 Sep 11.
Micro total analytical systems (μTAS) are attractive to multiple fields that include chemistry, medicine and engineering due to their portability, low power usage, potential for automation, and low sample and reagent consumption, which in turn results in low waste generation. The development of fully-functional μTAS is an iterative process, based on the design, fabrication and testing of multiple prototype microdevices. Typically, microfabrication protocols require a week or more of highly-skilled personnel time in high-maintenance cleanroom facilities, which makes this iterative process cost-prohibitive in many locations worldwide. Rapid-prototyping tools, in conjunction with the use of polydimethylsiloxane (PDMS), enable rapid development of microfluidic structures at lower costs, circumventing these issues in conventional microfabrication techniques. Multiple rapid-prototyping methods to fabricate PDMS-based microfluidic devices have been demonstrated in literature since the advent of soft-lithography in 1998; each method has its unique advantages and drawbacks. Here, we present a tutorial discussing current rapid-prototyping techniques to fabricate PDMS-based microdevices, including soft-lithography, print-and-peel and scaffolding techniques, among other methods, specifically comparing resolution of the features, fabrication processes and associated costs for each technique. We also present thoughts and insights towards each step of the iterative microfabrication process, from design to testing, to improve the development of fully-functional PDMS-based microfluidic devices at faster rates and lower costs.
微全分析系统(μTAS)因其便携性、低功耗、潜在的自动化能力以及低样品和试剂消耗,从而减少了废物的产生,因此受到化学、医学和工程等多个领域的青睐。完全功能的 μTAS 的开发是一个迭代过程,基于多个原型微器件的设计、制造和测试。通常,微制造协议需要一周或更长时间的高技能人员在高维护性的洁净室设施中进行操作,这使得这个迭代过程在全球许多地方都成本过高。快速原型工具与聚二甲基硅氧烷(PDMS)的使用相结合,能够以更低的成本快速开发微流控结构,规避了传统微制造技术中的这些问题。自 1998 年软光刻技术问世以来,已有多篇文献报道了多种用于制造基于 PDMS 的微流控器件的快速原型制作方法;每种方法都有其独特的优点和缺点。在这里,我们提供了一个教程,讨论了目前用于制造基于 PDMS 的微器件的快速原型制作技术,包括软光刻、印刷和剥离以及支架技术等方法,特别比较了每种技术的特征分辨率、制造工艺和相关成本。我们还针对从设计到测试的迭代微制造过程的每一步提出了一些想法和见解,以提高完全功能的基于 PDMS 的微流控器件的开发速度和降低成本。