Tobisch Sven
School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews, Fife, KY16 9ST, UK.
Chemistry. 2017 Dec 14;23(70):17800-17809. doi: 10.1002/chem.201703803. Epub 2017 Nov 20.
An in-depth computational probe of the copper-mediated formal aminoboration of β-alkylstyrenes with bis(pinacolato)diboron B pin and an archetype hydroxylamine ester by a dppbz-ligated {P^P}Cu boryl catalyst (dppbz≡{P^P}≡1,2-bis(diphenylphosphino)benzene) is presented. This first comprehensive computational study of the copper-mediated formal aminoboration utilising an electrophilic strategy has identified the most accessible pathway for productive catalysis. The mechanistic picture derived from smooth energy profiles acquired by employing a reliable computational protocol applied to a realistic catalyst model conforms to all available experimental data. The high degree of regio- and stereoselectivity achieved in syn-borylcupration and Umpolung electrophilic amination is instrumental to the exclusive generation of the (syn)-β-aminoalkylborane product. On the one hand, syn-borylcupration furnishes exclusively β-borylalkylcopper nucleophile upon boryl addition onto the vinylarene β-carbon. Its subsequent approach by the hydroxylamine electrophile to deliver the product with the release of {P^P}Cu benzoate favours a stepwise stereoretentive S 2-type oxidative addition/N-C bond-forming reductive elimination sequence. The copper benzoate species represents the catalyst resting state, and its transformation into the catalytically active borylcopper species upon salt metathesis with Li(OtBu) base and transmetallation with B pin is turnover limiting. Electronically modified β-alkylstyrenes featuring a para-CF substituted phenyl ring render the borylcupration faster, and more electron-rich hydroxylamine agents decelerate the electrophilic amination.
本文介绍了通过双(频哪醇)二硼(Bpin)和原型羟胺酯,利用联二苯并咪唑配体的{P^P}Cu硼基催化剂(dppbz≡{P^P}≡1,2-双(二苯基膦基)苯)对β-烷基苯乙烯进行铜介导的形式氨基硼化的深入计算研究。这是首次利用亲电策略对铜介导的形式氨基硼化进行的全面计算研究,确定了最可行的有效催化途径。通过将可靠的计算协议应用于实际催化剂模型获得的平滑能量分布得出的机理图景与所有可用的实验数据相符。在顺式硼铜化和极性翻转亲电胺化中实现的高区域和立体选择性有助于独家生成(顺式)-β-氨基烷基硼烷产物。一方面,顺式硼铜化在硼基加成到乙烯基芳烃的β-碳上时仅产生β-硼基烷基铜亲核试剂。随后羟胺亲电试剂对其进行加成以释放{P^P}Cu苯甲酸酯并生成产物,这有利于逐步的立体保持S2型氧化加成/N-C键形成还原消除序列。苯甲酸铜物种代表催化剂的静止状态,其在与Li(OtBu)碱进行盐复分解并与Bpin进行转金属化后转化为催化活性硼基铜物种是周转限制步骤。具有对-CF取代苯环的电子修饰的β-烷基苯乙烯使硼铜化更快,而电子密度更高的羟胺试剂则使亲电胺化减速。