Suppr超能文献

系统评价统计方法在营养流行病学中量化或校正连续暴露测量误差的方法。

Systematic review of statistical approaches to quantify, or correct for, measurement error in a continuous exposure in nutritional epidemiology.

机构信息

Nuffield Department of Population Health, University of Oxford, Big Data Institute, Old Road Campus, Roosevelt Drive, Headington, Oxford, OX3 7LF, UK.

School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, Canada.

出版信息

BMC Med Res Methodol. 2017 Sep 19;17(1):146. doi: 10.1186/s12874-017-0421-6.

Abstract

BACKGROUND

Several statistical approaches have been proposed to assess and correct for exposure measurement error. We aimed to provide a critical overview of the most common approaches used in nutritional epidemiology.

METHODS

MEDLINE, EMBASE, BIOSIS and CINAHL were searched for reports published in English up to May 2016 in order to ascertain studies that described methods aimed to quantify and/or correct for measurement error for a continuous exposure in nutritional epidemiology using a calibration study.

RESULTS

We identified 126 studies, 43 of which described statistical methods and 83 that applied any of these methods to a real dataset. The statistical approaches in the eligible studies were grouped into: a) approaches to quantify the relationship between different dietary assessment instruments and "true intake", which were mostly based on correlation analysis and the method of triads; b) approaches to adjust point and interval estimates of diet-disease associations for measurement error, mostly based on regression calibration analysis and its extensions. Two approaches (multiple imputation and moment reconstruction) were identified that can deal with differential measurement error.

CONCLUSIONS

For regression calibration, the most common approach to correct for measurement error used in nutritional epidemiology, it is crucial to ensure that its assumptions and requirements are fully met. Analyses that investigate the impact of departures from the classical measurement error model on regression calibration estimates can be helpful to researchers in interpreting their findings. With regard to the possible use of alternative methods when regression calibration is not appropriate, the choice of method should depend on the measurement error model assumed, the availability of suitable calibration study data and the potential for bias due to violation of the classical measurement error model assumptions. On the basis of this review, we provide some practical advice for the use of methods to assess and adjust for measurement error in nutritional epidemiology.

摘要

背景

已有多种统计学方法被提出以评估和校正暴露测量误差。本研究旨在对营养流行病学中最常用的方法进行批判性综述。

方法

通过 MEDLINE、EMBASE、BIOSIS 和 CINAHL 检索截至 2016 年 5 月发表的英文报告,以确定描述使用校准研究来量化和/或校正营养流行病学中连续暴露测量误差的方法的研究。

结果

我们共确定了 126 项研究,其中 43 项描述了统计学方法,83 项将这些方法应用于真实数据集。合格研究中的统计学方法可分为:a)量化不同饮食评估工具与“真实摄入量”之间关系的方法,主要基于相关分析和三联体方法;b)校正饮食-疾病关联的点估计和区间估计以校正测量误差的方法,主要基于回归校准分析及其扩展。确定了两种方法(多重插补和矩重建)可处理差异测量误差。

结论

对于回归校准分析,这是营养流行病学中校正测量误差最常用的方法,确保其假设和要求得到充分满足至关重要。研究偏离经典测量误差模型对回归校准估计的影响的分析可以帮助研究人员解释其发现。关于回归校准不适用时替代方法的可能使用,方法的选择应取决于所假设的测量误差模型、可用的合适校准研究数据以及违反经典测量误差模型假设的潜在偏差。基于本综述,我们为营养流行病学中评估和校正测量误差的方法的使用提供了一些实用建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6394/5606038/c4833b6c9fea/12874_2017_421_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验