Department of Biology, University of Pennsylvania, Philadelphia, United States.
Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States.
Elife. 2017 Sep 20;6:e27872. doi: 10.7554/eLife.27872.
Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-β receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.
长时程突触可塑性和记忆需要新的蛋白质合成。然而,学习如何触发这一过程形成记忆尚不清楚。转导蛋白/陷阱是一种候选蛋白,通过抑制激活突触处的 microRNA 介导的翻译沉默来驱动这种学习诱导的记忆机制。我们发现,缺乏转导蛋白/陷阱的小鼠在突触标记中出现缺陷,而突触标记需要激活突触处的蛋白质合成,以及长时程记忆。学习后从这些小鼠的海马体样本中发现,几种与疾病相关的 microRNAs 靶向激活素 A 受体 1C(ACVR1C)的水平增加,ACVR1C 是转化生长因子-β受体超家族的一个组成部分。此外,缺乏转导蛋白/陷阱会消除学习后 ACVR1C 蛋白在突触处的上调。最后,缺乏转导蛋白/陷阱的小鼠的突触标记和长时程记忆缺陷可被 ACVR1C 抑制所模拟。因此,我们定义了一种新的记忆机制,即学习通过转导蛋白/陷阱逆转 microRNA 介导的新型可塑性蛋白 ACVR1C 的沉默。