Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
Gogos Lab, Mortimer B. Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, Columbia University, L5-053, 3227 Broadway, New York, NY, 10027, USA.
Mol Brain. 2020 Nov 10;13(1):145. doi: 10.1186/s13041-020-00691-5.
Activity-dependent local protein synthesis is critical for synapse-specific, persistent plasticity. Abnormalities in local protein synthesis have been implicated in psychiatric disorders. We have recently identified the translin/trax microRNA-degrading enzyme as a novel mediator of protein synthesis at activated synapses. Additionally, translin knockout (KO) mice, which lack translin/trax, exhibit some of the behavioral abnormalities found in a mouse model of fragile X syndrome (fragile X mental retardation protein-FMRP-KO mice). Therefore, identifying signaling pathways interacting with translin/trax to support persistent synaptic plasticity is a translationally relevant goal. Here, as a first step to achieve this goal, we have assessed the requirement of translin/trax for multiple hippocampal synaptic plasticity paradigms that rely on distinct molecular mechanisms. We found that mice lacking translin/trax exhibited selective impairment in a form of persistent hippocampal plasticity, which requires postsynaptic protein kinase A (PKA) activity. In contrast, enduring forms of plasticity that are dependent on presynaptic PKA were unaffected. Furthermore, these mice did not display exaggerated metabotropic glutamate receptor-mediated long-term synaptic depression (mGluR-LTD), a hallmark of the FMRP KO mice. On the contrary, translin KO mice exhibited deficits in N-methyl-D-aspartate receptor (NMDAR) dependent LTD, a phenotype not observed in the FMRP knockouts. Taken together, these findings demonstrate that translin/trax mediates long-term synaptic plasticity that is dependent on postsynaptic PKA signaling and suggest that translin/trax and FMRP play distinct roles in hippocampal synaptic plasticity.
活性依赖的局部蛋白质合成对于突触特异性、持久的可塑性至关重要。局部蛋白质合成异常与精神疾病有关。我们最近发现转染/特拉克斯微 RNA 降解酶是激活突触处蛋白质合成的一种新型介质。此外,缺乏转染/特拉克斯的转染敲除 (KO) 小鼠表现出一些在脆性 X 综合征 (脆性 X 智力迟钝蛋白-FMRP-KO 小鼠) 小鼠模型中发现的行为异常。因此,确定与转染/特拉克斯相互作用以支持持久突触可塑性的信号通路是一个具有转化意义的目标。在这里,作为实现这一目标的第一步,我们评估了转染/特拉克斯对依赖不同分子机制的多种海马突触可塑性范例的需求。我们发现,缺乏转染/特拉克斯的小鼠在一种需要突触后蛋白激酶 A (PKA) 活性的持久海马可塑性形式中表现出选择性损伤。相比之下,依赖于突触前 PKA 的持久形式的可塑性不受影响。此外,这些小鼠没有表现出代谢型谷氨酸受体介导的长时程突触抑制 (mGluR-LTD) 的过度增加,这是 FMRP KO 小鼠的一个标志。相反,转染 KO 小鼠表现出 N-甲基-D-天冬氨酸受体 (NMDAR) 依赖性 LTD 缺陷,这是在 FMRP 敲除体中未观察到的表型。总之,这些发现表明转染/特拉克斯介导依赖于突触后 PKA 信号的长时程突触可塑性,并表明转染/特拉克斯和 FMRP 在海马突触可塑性中发挥不同的作用。