Suppr超能文献

植物蛋白对重金属胁迫的响应——综述

Responses of Plant Proteins to Heavy Metal Stress-A Review.

作者信息

Hasan Md Kamrul, Cheng Yuan, Kanwar Mukesh K, Chu Xian-Yao, Ahammed Golam J, Qi Zhen-Yu

机构信息

Department of Horticulture, Zhejiang UniversityHangzhou, China.

Department of Agricultural Chemistry, Sylhet Agricultural UniversitySylhet, Bangladesh.

出版信息

Front Plant Sci. 2017 Sep 5;8:1492. doi: 10.3389/fpls.2017.01492. eCollection 2017.

Abstract

Plants respond to environmental pollutants such as heavy metal(s) by triggering the expression of genes that encode proteins involved in stress response. Toxic metal ions profoundly affect the cellular protein homeostasis by interfering with the folding process and aggregation of nascent or non-native proteins leading to decreased cell viability. However, plants possess a range of ubiquitous cellular surveillance systems that enable them to efficiently detoxify heavy metals toward enhanced tolerance to metal stress. As proteins constitute the major workhorses of living cells, the chelation of metal ions in cytosol with phytochelatins and metallothioneins followed by compartmentalization of metals in the vacuoles as well as the repair of stress-damaged proteins or removal and degradation of proteins that fail to achieve their native conformations are critical for plant tolerance to heavy metal stress. In this review, we provide a broad overview of recent advances in cellular protein research with regards to heavy metal tolerance in plants. We also discuss how plants maintain functional and healthy proteomes for survival under such capricious surroundings.

摘要

植物通过触发编码参与应激反应蛋白质的基因表达来响应环境污染物,如重金属。有毒金属离子通过干扰新生或非天然蛋白质的折叠过程和聚集,深刻影响细胞蛋白质稳态,导致细胞活力下降。然而,植物拥有一系列普遍存在的细胞监测系统,使它们能够有效地将重金属解毒,从而增强对金属胁迫的耐受性。由于蛋白质构成活细胞的主要“工作主力”,胞质溶胶中的金属离子与植物螯合肽和金属硫蛋白螯合,随后将金属分隔在液泡中,以及修复应激损伤的蛋白质或去除和降解未能形成天然构象的蛋白质,对于植物耐受重金属胁迫至关重要。在本综述中,我们广泛概述了植物重金属耐受性方面细胞蛋白质研究的最新进展。我们还讨论了植物如何在如此多变的环境中维持功能性且健康的蛋白质组以生存。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd74/5591867/67113f26f63c/fpls-08-01492-g0001.jpg

相似文献

1
Responses of Plant Proteins to Heavy Metal Stress-A Review.
Front Plant Sci. 2017 Sep 5;8:1492. doi: 10.3389/fpls.2017.01492. eCollection 2017.
2
Implications of metal accumulation mechanisms to phytoremediation.
Environ Sci Pollut Res Int. 2009 Mar;16(2):162-75. doi: 10.1007/s11356-008-0079-z. Epub 2008 Dec 6.
4
Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
Rev Environ Contam Toxicol. 2014;232:1-44. doi: 10.1007/978-3-319-06746-9_1.
5
Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants.
Environ Sci Pollut Res Int. 2021 Dec;28(46):64967-64986. doi: 10.1007/s11356-021-16805-y. Epub 2021 Oct 2.
6
Toxicity of heavy metals and metal-containing nanoparticles on plants.
Biochim Biophys Acta. 2016 Aug;1864(8):932-44. doi: 10.1016/j.bbapap.2016.02.020. Epub 2016 Mar 3.
8
[Phytochelatin and its function in heavy metal tolerance of higher plants].
Ying Yong Sheng Tai Xue Bao. 2003 Apr;14(4):632-6.
9
[Mechanisms of heavy metal cadmium tolerance in plants].
Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 2006 Feb;32(1):1-8.
10
Molecular mechanisms of plant metal tolerance and homeostasis.
Planta. 2001 Mar;212(4):475-86. doi: 10.1007/s004250000458.

引用本文的文献

1
Comprehensive review of multiomics applications and remediation of plant heavy metal toxicity.
Stress Biol. 2025 Sep 16;5(1):58. doi: 10.1007/s44154-025-00233-w.
2
The challenges of co-extraction of animal and plant proteins from transgenic plants for use in food and feed.
Front Plant Sci. 2025 Aug 26;16:1626856. doi: 10.3389/fpls.2025.1626856. eCollection 2025.
3
5
Comprehensive heavy metal remediation mechanisms with insights into CRISPR-Cas9 and biochar innovations.
Biodegradation. 2025 Jul 25;36(4):69. doi: 10.1007/s10532-025-10165-x.
9
Cellular Stress Responses and Associated Diseases: A Focus on Heat Shock Proteins.
Cell Biochem Biophys. 2025 Mar 24. doi: 10.1007/s12013-025-01724-3.

本文引用的文献

1
Comparative Transcriptional Profiling of Contrasting Rice Genotypes Shows Expression Differences during Arsenic Stress.
Plant Genome. 2015 Jul;8(2):eplantgenome2014.09.0054. doi: 10.3835/plantgenome2014.09.0054.
2
How plants cope with heavy metals.
Bot Stud. 2014 Dec;55(1):35. doi: 10.1186/1999-3110-55-35. Epub 2014 Mar 20.
3
A Simple Metallothionein-Based Biosensor for Enhanced Detection of Arsenic and Mercury.
Biosensors (Basel). 2017 Mar 13;7(1):14. doi: 10.3390/bios7010014.
5
Identification of amino acid residues important for the arsenic resistance function of Arabidopsis ABCC1.
FEBS Lett. 2017 Feb;591(4):656-666. doi: 10.1002/1873-3468.12576. Epub 2017 Feb 13.
6
Role of sHsps in organizing cytosolic protein aggregation and disaggregation.
Cell Stress Chaperones. 2017 Jul;22(4):493-502. doi: 10.1007/s12192-017-0762-4. Epub 2017 Jan 24.
7
HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants.
J Pineal Res. 2017 Mar;62(2). doi: 10.1111/jpi.12387. Epub 2017 Feb 10.
8
BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins.
J Mol Biol. 2017 Jan 6;429(1):128-141. doi: 10.1016/j.jmb.2016.11.013. Epub 2016 Nov 21.
9
Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants.
J Pineal Res. 2016 Nov;61(4):457-469. doi: 10.1111/jpi.12359. Epub 2016 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验