Suppr超能文献

银纳米线透明电极的焦耳加热问题。

The Joule heating problem in silver nanowire transparent electrodes.

机构信息

Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada. Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

出版信息

Nanotechnology. 2017 Oct 20;28(42):425703. doi: 10.1088/1361-6528/aa7f34. Epub 2017 Sep 20.

Abstract

Silver nanowire transparent electrodes have shown considerable potential to replace conventional transparent conductive materials. However, in this report we show that Joule heating is a unique and serious problem with these electrodes. When conducting current densities encountered in organic solar cells, the average surface temperature of indium tin oxide (ITO) and silver nanowire electrodes, both with sheet resistances of 60 ohms/square, remains below 35 °C. However, in contrast to ITO, the temperature in the nanowire electrode is very non-uniform, with some localized points reaching temperatures above 250 °C. These hotspots accelerate nanowire degradation, leading to electrode failure after 5 days of continuous current flow. We show that graphene, a commonly used passivation layer for these electrodes, slows nanowire degradation and creates a more uniform surface temperature under current flow. However, the graphene does not prevent Joule heating in the nanowires and local points of high temperature ultimately shift the failure mechanism from nanowire degradation to melting of the underlying plastic substrate. In this paper, surface temperature mapping, lifetime testing under current flow, post-mortem analysis, and modelling illuminate the behaviour and failure mechanisms of nanowires under extended current flow and provide guidelines for managing Joule heating.

摘要

银纳米线透明电极在替代传统透明导电材料方面显示出了相当大的潜力。然而,在本报告中,我们表明焦耳加热是这些电极的一个独特且严重的问题。当遇到有机太阳能电池中的电流密度时,氧化铟锡(ITO)和银纳米线电极的平均表面温度(其方阻均为 60 欧姆/平方)保持在 35°C 以下。然而,与 ITO 不同的是,纳米线电极的温度非常不均匀,一些局部点的温度超过 250°C。这些热点加速了纳米线的降解,导致电极在连续电流流动 5 天后失效。我们表明,石墨烯是这些电极常用的钝化层,它可以减缓纳米线的降解,并在电流流动下产生更均匀的表面温度。然而,石墨烯并不能阻止纳米线中的焦耳加热,局部高温点最终将失效机制从纳米线降解转变为底层塑料基板的熔化。本文通过表面温度映射、电流下的寿命测试、事后分析和建模,阐明了纳米线在扩展电流下的行为和失效机制,并为焦耳加热的管理提供了指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验