Suppr超能文献

用于全印刷、柔性电子的石墨烯线条的高分辨率转印。

High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics.

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States.

Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208, United States.

出版信息

ACS Nano. 2017 Jul 25;11(7):7431-7439. doi: 10.1021/acsnano.7b03795. Epub 2017 Jul 12.

Abstract

Pristine graphene inks show great promise for flexible printed electronics due to their high electrical conductivity and robust mechanical, chemical, and environmental stability. While traditional liquid-phase printing methods can produce graphene patterns with a resolution of ∼30 μm, more precise techniques are required for improved device performance and integration density. A high-resolution transfer printing method is developed here capable of printing conductive graphene patterns on plastic with line width and spacing as small as 3.2 and 1 μm, respectively. The core of this method lies in the design of a graphene ink and its integration with a thermally robust mold that enables annealing at up to ∼250 °C for precise, high-performance graphene patterns. These patterns exhibit excellent electrical and mechanical properties, enabling favorable operation as electrodes in fully printed electrolyte-gated transistors and inverters with stable performance even following cyclic bending to a strain of 1%. The high resolution coupled with excellent control over the line edge roughness to below 25 nm enables aggressive scaling of transistor dimensions, offering a compelling route for the scalable manufacturing of flexible nanoelectronic devices.

摘要

由于其高导电性以及稳健的机械、化学和环境稳定性,原始石墨烯油墨在柔性印刷电子产品方面展现出巨大的应用前景。虽然传统的液相印刷方法可以生产出分辨率约为 30 μm 的石墨烯图案,但为了提高器件性能和集成密度,需要更精确的技术。本文开发了一种高分辨率的转印打印方法,能够在塑料上打印线宽和线间距分别小至 3.2 μm 和 1 μm 的导电石墨烯图案。该方法的核心在于设计一种石墨烯油墨,并将其与热稳定模具集成,使石墨烯图案能够在高达约 250℃的温度下进行精确退火,从而实现高性能石墨烯图案。这些图案表现出优异的电学和力学性能,可作为完全印刷的电解质门控晶体管中的电极进行有利操作,即使在循环弯曲至 1%应变的情况下,性能仍然稳定。高分辨率结合对线边缘粗糙度的出色控制(低于 25nm),可以实现晶体管尺寸的激进缩放,为可伸缩制造柔性纳米电子器件提供了极具吸引力的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验