CNRS, CRPP, UPR 8641 , 33600 Pessac , France.
University of Bordeaux, CRPP, UPR 8641 , 33600 Pessac , France.
Chem Rev. 2018 Mar 14;118(5):2392-2468. doi: 10.1021/acs.chemrev.7b00220. Epub 2017 Sep 20.
Catalytic four-electron reduction of O to water is one of the most extensively studied electrochemical reactions due to O exceptional availability and high O/HO redox potential, which may in particular allow highly energetic reactions in fuel cells. To circumvent the use of expensive and inefficient Pt catalysts, multicopper oxidases (MCOs) have been envisioned because they provide efficient O reduction with almost no overpotential. MCOs have been used to elaborate enzymatic biofuel cells (EBFCs), a subclass of fuel cells in which enzymes replace the conventional catalysts. A glucose/O EBFC, with a glucose oxidizing anode and a O reducing MCO cathode, could become the in vivo source of electricity that would power sometimes in the future integrated medical devices. This review covers the challenges and advances in the electrochemistry of MCOs and their use in EBFCs with a particular emphasis on the last 6 years. First basic features of MCOs and EBFCs are presented. Clues provided by electrochemistry to understand these enzymes and how they behave once connected at electrodes are described. Progresses realized in the development of efficient biocathodes for O reduction relying both on direct and mediated electron transfer mechanism are then discussed. Some implementations in EBFCs are finally presented.
氧的四电子催化还原为水是研究最广泛的电化学反应之一,因为氧的可用性极高,O/HO 氧化还原电位也很高,这可能特别允许在燃料电池中进行高能量反应。为了避免使用昂贵且低效的 Pt 催化剂,可以设想使用多铜氧化酶(MCO),因为它们可以提供高效的 O 还原,几乎没有过电势。MCO 已被用于精心设计酶促生物燃料电池(EBFC),这是燃料电池的一个子类,其中酶取代了传统的催化剂。具有葡萄糖氧化阳极和 O 还原 MCO 阴极的葡萄糖/O EBFC 将来可能成为为体内供电的来源,为未来某个时候的集成医疗设备提供动力。本文综述了 MCO 的电化学及其在 EBFC 中的应用的挑战和进展,特别强调了过去 6 年的进展。首先介绍了 MCO 和 EBFC 的基本特征。描述了电化学提供的线索,以了解这些酶以及它们在连接到电极时的行为。然后讨论了在开发依赖于直接和介导电子转移机制的高效生物阴极以进行 O 还原方面取得的进展。最后介绍了一些在 EBFC 中的应用。