Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
Plant Physiol. 2017 Nov;175(3):998-1017. doi: 10.1104/pp.17.00961. Epub 2017 Sep 20.
Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of their development is of high interest for plant science research because of their importance for leaf growth and hence for plant fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification. PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets.
pavement cells (PCs) 是叶片表皮中最常见的细胞类型,在叶片生长和功能中发挥着重要作用。在许多植物物种中,PCs 形成具有互锁裂片的高度复杂的拼图状细胞。由于它们对叶片生长的重要性,因此对植物适应能力和作物产量具有重要意义,因此对其发育的理解是植物科学研究的热点。然而,PC 发育的研究受到限制,因为缺乏能够自动分割和量化适合反映其细胞复杂性的 PC 形状参数的稳健方法。在这里,我们提出了一种新的基于 ImageJ 的工具 PaCeQuant,它提供了一个用于 PC 形状量化的全自动图像分析工作流程。PaCeQuant 自动从共聚焦输入图像中检测 PC 的细胞边界,并允许手动校正自动分割结果或直接导入手动分割的细胞。PaCeQuant 同时提取 27 个形状特征,包括全局、基于轮廓、基于骨架和特定于 PC 的对象描述符。此外,我们还包括了一种用于分别在两细胞交界处和三细胞交界处对裂片进行分类和分析的方法。我们提供了一个用于图形可视化和统计分析的 R 脚本。我们通过与手动分割和现有量化工具的广泛比较分析验证了 PaCeQuant 的有效性,并展示了其在分析发育过程中和不同基因型之间的 PC 形状特征方面的可用性。因此,PaCeQuant 为 PC 形状特征的稳健、高效和可重复的定量分析提供了一个平台,可轻松应用于在大型数据集研究 PC 发育。