Suppr超能文献

基于网络的形态分析框架可实现对叶片表皮细胞的精确特征描述。

A network-based framework for shape analysis enables accurate characterization of leaf epidermal cells.

机构信息

School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.

Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.

出版信息

Nat Commun. 2021 Jan 19;12(1):458. doi: 10.1038/s41467-020-20730-y.

Abstract

Cell shape is crucial for the function and development of organisms. Yet, versatile frameworks for cell shape quantification, comparison, and classification remain underdeveloped. Here, we introduce a visibility graph representation of shapes that facilitates network-driven characterization and analyses across shapes encountered in different domains. Using the example of complex shape of leaf pavement cells, we show that our framework accurately quantifies cell protrusions and invaginations and provides additional functionality in comparison to the contending approaches. We further show that structural properties of the visibility graphs can be used to quantify pavement cell shape complexity and allow for classification of plants into their respective phylogenetic clades. Therefore, the visibility graphs provide a robust and unique framework to accurately quantify and classify the shape of different objects.

摘要

细胞形状对于生物体的功能和发育至关重要。然而,用于细胞形状定量、比较和分类的多功能框架仍未得到充分发展。在这里,我们引入了一种形状的可见性图表示法,该表示法有助于在不同领域遇到的形状中进行网络驱动的特征描述和分析。我们以叶片平铺细胞的复杂形状为例,展示了我们的框架如何准确地量化细胞的突起和内陷,并与竞争方法相比提供了额外的功能。我们进一步表明,可见性图的结构性质可用于量化平铺细胞形状的复杂性,并允许根据其各自的系统发育分支对植物进行分类。因此,可见性图为准确地量化和分类不同物体的形状提供了一个强大而独特的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验