Suppr超能文献

离散剪切波作为欠采样(, )空间MR数据低秩加稀疏分解中的稀疏化变换

Discrete Shearlets as a Sparsifying Transform in Low-Rank Plus Sparse Decomposition for Undersampled (, )-Space MR Data.

作者信息

Protonotarios Nicholas E, Tzampazidou Evangelia, Kastis George A, Dikaios Nikolaos

机构信息

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.

Mathematics Research Center, Academy of Athens, 11527 Athens, Greece.

出版信息

J Imaging. 2022 Jan 29;8(2):29. doi: 10.3390/jimaging8020029.

Abstract

The discrete shearlet transformation accurately represents the discontinuities and edges occurring in magnetic resonance imaging, providing an excellent option of a sparsifying transform. In the present paper, we examine the use of discrete shearlets over other sparsifying transforms in a low-rank plus sparse decomposition problem, denoted by L+S. The proposed algorithm is evaluated on simulated dynamic contrast enhanced (DCE) and small bowel data. For the small bowel, eight subjects were scanned; the sequence was run first on breath-holding and subsequently on free-breathing, without changing the anatomical position of the subject. The reconstruction performance of the proposed algorithm was evaluated against - FOCUSS. L+S decomposition, using discrete shearlets as sparsifying transforms, successfully separated the low-rank (background and periodic motion) from the sparse component (enhancement or bowel motility) for both DCE and small bowel data. Motion estimated from low-rank of DCE data is closer to ground truth deformations than motion estimated from and . Motility metrics derived from the component of free-breathing data were not significantly different from the ones from breath-holding data up to four-fold undersampling, indicating that bowel (rapid/random) motility is isolated in . Our work strongly supports the use of discrete shearlets as a sparsifying transform in a L+S decomposition for undersampled MR data.

摘要

离散剪切波变换能够精确表示磁共振成像中出现的不连续性和边缘,为稀疏变换提供了一个极佳的选择。在本文中,我们研究了在低秩加稀疏分解问题(记为L + S)中,离散剪切波相对于其他稀疏变换的应用。所提出的算法在模拟动态对比增强(DCE)和小肠数据上进行了评估。对于小肠,扫描了8名受试者;该序列先在屏气状态下运行,随后在自由呼吸状态下运行,且不改变受试者的解剖位置。所提算法的重建性能与FOCUSS进行了对比评估。使用离散剪切波作为稀疏变换的L + S分解,成功地将DCE和小肠数据中的低秩部分(背景和周期性运动)与稀疏部分(增强或肠道蠕动)分离开来。从DCE数据的低秩部分估计出的运动比从[未提及的其他方法]估计出的运动更接近真实变形。从自由呼吸数据的[未提及的部分]得出的蠕动指标,在欠采样四倍以内时,与屏气数据得出的指标没有显著差异,这表明肠道(快速/随机)蠕动在[未提及的部分]中被分离出来。我们的工作有力地支持了在欠采样MR数据的L + S分解中使用离散剪切波作为稀疏变换。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512b/8878450/994ea47cb3c7/jimaging-08-00029-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验