Suppr超能文献

定量压缩感知 MRI 的稳健性:随机欠采样模式对 DCE-MRI 和 DSC-MRI 衍生参数的影响。

Robustness of quantitative compressive sensing MRI: the effect of random undersampling patterns on derived parameters for DCE- and DSC-MRI.

机构信息

Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240 USA.

出版信息

IEEE Trans Med Imaging. 2012 Feb;31(2):504-11. doi: 10.1109/TMI.2011.2172216. Epub 2011 Oct 14.

Abstract

Compressive sensing (CS) in Cartesian magnetic resonance imaging (MRI) involves random partial Fourier acquisitions. The random nature of these acquisitions can lead to variance in reconstruction errors. In quantitative MRI, variance in the reconstructed images translates to an uncertainty in the derived quantitative maps. We show that for a spatially regularized 2 ×-accelerated human breast CS DCE-MRI acquisition with a 192 (2) matrix size, the coefficients of variation (CoVs) in voxel-level parameters due to the random acquisition are 1.1%, 0.96%, and 1.5% for the tissue parameters K(trans), v(e), and v(p), with an average error in the mean of -2.5%, -2.0%, and -3.7%, respectively. Only 5% of the acquisition schemes had a systematic underestimation larger than than 4.2%, 3.7%, and 6.1%, respectively. For a 2 × -accelerated rat brain CS DSC-MRI study with a 64(2) matrix size, the CoVs due to the random acquisition were 19%, 9.5%, and 15% for the cerebral blood flow and blood volume and mean transit time, respectively, and the average errors in the tumor mean were 9.2%, 0.49%, and -7.0%, respectively. Across 11 000 different CS reconstructions, we saw no outliers in the distribution of parameters, suggesting that, despite the random undersampling schemes, CS accelerated quantitative MRI may have a predictable level of performance.

摘要

压缩感知(CS)在笛卡尔磁共振成像(MRI)中涉及随机部分傅里叶采集。这些采集的随机性可能导致重建误差的变化。在定量 MRI 中,重建图像的方差转化为衍生定量图的不确定性。我们表明,对于具有 192(2)矩阵大小的空间正则化 2×加速人类乳房 CS DCE-MRI 采集,由于随机采集,体素水平参数的变异系数(CoV)对于组织参数 K(trans)、v(e)和 v(p)分别为 1.1%、0.96%和 1.5%,平均误差的平均值为-2.5%、-2.0%和-3.7%。只有 5%的采集方案存在大于 4.2%、3.7%和 6.1%的系统低估。对于具有 64(2)矩阵大小的 2×加速大鼠脑 CS DSC-MRI 研究,由于随机采集,脑血流和血容量以及平均通过时间的 CoV 分别为 19%、9.5%和 15%,肿瘤平均的平均误差分别为 9.2%、0.49%和-7.0%。在 11000 次不同的 CS 重建中,我们没有看到参数分布中的异常值,这表明尽管存在随机欠采样方案,但 CS 加速定量 MRI 可能具有可预测的性能水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1320/3289060/7e7831531a94/nihms352023f1.jpg

相似文献

6
High-frequency subband compressed sensing MRI using quadruplet sampling.四元组采样的高频子带压缩感知 MRI。
Magn Reson Med. 2013 Nov;70(5):1306-18. doi: 10.1002/mrm.24592. Epub 2012 Dec 27.
7
Accelerated radial Fourier-velocity encoding using compressed sensing.使用压缩感知的加速径向傅里叶速度编码
Z Med Phys. 2014 Sep;24(3):190-200. doi: 10.1016/j.zemedi.2013.10.005. Epub 2013 Nov 13.

引用本文的文献

1
Phenomic Imaging.表型组成像
Phenomics. 2023 Nov 3;3(6):597-612. doi: 10.1007/s43657-023-00128-8. eCollection 2023 Dec.
8
Fast group matching for MR fingerprinting reconstruction.磁共振指纹图谱重建的快速组匹配
Magn Reson Med. 2015 Aug;74(2):523-8. doi: 10.1002/mrm.25439. Epub 2014 Aug 28.
10
Magnetic resonance fingerprinting.磁共振指纹成像。
Nature. 2013 Mar 14;495(7440):187-92. doi: 10.1038/nature11971.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验