Elsässer Brigitta, Zauner Florian B, Messner Johann, Soh Wai Tuck, Dall Elfriede, Brandstetter Hans
Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria.
Information Management, University of Linz, Alternberger Strasse 69, A-4040 Linz, Austria.
ACS Catal. 2017 Sep 1;7(9):5585-5593. doi: 10.1021/acscatal.7b01505. Epub 2017 Jul 14.
The cysteine protease enzyme legumain hydrolyzes peptide bonds with high specificity after asparagine and under more acidic conditions after aspartic acid [Baker E. N.J. Mol. Biol.1980, 141, 441-484; Baker E. N.; J. Mol. Biol.1977, 111, 207-210; Drenth J.; Biochemistry1976, 15, 3731-3738; Menard R.; J. Cell. Biochem.1994, 137; Polgar L.Eur. J. Biochem.1978, 88, 513-521; Storer A. C.; Methods Enzymol.1994, 244, 486-500. Remarkably, legumain additionally exhibits ligase activity that prevails at pH > 5.5. The atomic reaction mechanisms including their pH dependence are only partly understood. Here we present a density functional theory (DFT)-based quantum mechanics/molecular mechanics (QM/MM) study of the detailed reaction mechanism of both activities for human legumain in solution. Contrasting the situation in other papain-like proteases, our calculations reveal that the active site Cys189 must be present in the protonated state for a productive nucleophilic attack and simultaneous rupture of the scissile peptide bond, consistent with the experimental pH profile of legumain-catalyzed cleavages. The resulting thioester intermediate (INT1) is converted by water attack on the thioester into a second intermediate, a diol (INT2), which is released by proton abstraction by Cys189. Surprisingly, we found that ligation is not the exact reverse of the proteolysis but can proceed via two distinct routes. Whereas the transpeptidation route involves aminolysis of the thioester (INT1), at pH 6 a cysteine-independent, histidine-assisted ligation route was found. Given legumain's important roles in immunity, cancer, and neurodegenerative diseases, our findings open up possibilities for targeted drug design in these fields.
半胱氨酸蛋白酶豆球蛋白在天冬酰胺之后能高度特异性地水解肽键,在更酸性条件下则在天冬氨酸之后水解[贝克E.N.《分子生物学杂志》1980年,第141卷,441 - 484页;贝克E.N.;《分子生物学杂志》1977年,第111卷,207 - 210页;德伦特J.;《生物化学》1976年,第15卷,3731 - 3738页;梅纳尔R.;《细胞生物化学杂志》1994年,137页;波尔加L.《欧洲生物化学杂志》1978年,第88卷,513 - 521页;斯托勒A.C.;《酶学方法》1994年,第244卷,486 - 500页。值得注意的是,豆球蛋白还表现出连接酶活性,该活性在pH > 5.5时占主导。包括其pH依赖性在内的原子反应机制仅得到部分理解。在此,我们展示了一项基于密度泛函理论(DFT)的量子力学/分子力学(QM/MM)研究,该研究针对溶液中人类豆球蛋白两种活性的详细反应机制。与其他木瓜蛋白酶样蛋白酶的情况形成对比的是,我们的计算表明,活性位点半胱氨酸189必须以质子化状态存在,才能进行有效的亲核攻击并同时断裂可裂解的肽键,这与豆球蛋白催化裂解的实验pH曲线一致。生成的硫酯中间体(INT1)通过水对硫酯的攻击转化为第二个中间体,即二醇(INT2),然后通过半胱氨酸189夺取质子将其释放。令人惊讶的是,我们发现连接反应并非蛋白水解的完全逆反应,而是可以通过两条不同的途径进行。转肽途径涉及硫酯(INT1)的氨解,而在pH 6时,发现了一条不依赖半胱氨酸、由组氨酸辅助的连接途径。鉴于豆球蛋白在免疫、癌症和神经退行性疾病中的重要作用,我们的发现为这些领域的靶向药物设计开辟了可能性。