Suppr超能文献

基于局部线性约束的材料分解优化模型

Locally linear constraint based optimization model for material decomposition.

作者信息

Wang Qian, Zhu Yining, Yu Hengyong

机构信息

Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, United States of America.

出版信息

Phys Med Biol. 2017 Oct 19;62(21):8314-8340. doi: 10.1088/1361-6560/aa8e13.

Abstract

Dual spectral computed tomography (DSCT) has a superior material distinguishability than the conventional single spectral computed tomography (SSCT). However, the decomposition process is an illposed problem, which is sensitive to noise. Thus, the decomposed image quality is degraded, and the corresponding signal-to-noise ratio (SNR) is much lower than that of directly reconstructed image of SSCT. In this work, we establish a locally linear relationship between the decomposed results of DSCT and SSCT. Based on this constraint, we propose an optimization model for DSCT and develop an iterative method with image guided filtering. To further improve the image quality, we employ a preprocessing method based on the relative total variation regularization. Both numerical simulations and real experiments are performed, and the results confirm the effectiveness of our proposed approach.

摘要

双能谱计算机断层扫描(DSCT)比传统的单能谱计算机断层扫描(SSCT)具有更高的物质分辨能力。然而,分解过程是一个不适定问题,对噪声敏感。因此,分解后的图像质量会下降,相应的信噪比(SNR)远低于SSCT直接重建图像的信噪比。在这项工作中,我们在DSCT和SSCT的分解结果之间建立了局部线性关系。基于此约束,我们提出了一种DSCT优化模型,并开发了一种基于图像引导滤波的迭代方法。为了进一步提高图像质量,我们采用了一种基于相对全变差正则化的预处理方法。进行了数值模拟和实际实验,结果证实了我们提出的方法的有效性。

相似文献

1
Locally linear constraint based optimization model for material decomposition.
Phys Med Biol. 2017 Oct 19;62(21):8314-8340. doi: 10.1088/1361-6560/aa8e13.
2
Locally linear transform based three-dimensional gradient -norm minimization for spectral CT reconstruction.
Med Phys. 2020 Oct;47(10):4810-4826. doi: 10.1002/mp.14420. Epub 2020 Aug 25.
4
Iterative image-domain decomposition for dual-energy CT.
Med Phys. 2014 Apr;41(4):041901. doi: 10.1118/1.4866386.
6
TICMR: Total Image Constrained Material Reconstruction via Nonlocal Total Variation Regularization for Spectral CT.
IEEE Trans Med Imaging. 2016 Dec;35(12):2578-2586. doi: 10.1109/TMI.2016.2587661. Epub 2016 Jul 7.
7
A model-based direct inversion network (MDIN) for dual spectral computed tomography.
Phys Med Biol. 2024 Feb 19;69(5). doi: 10.1088/1361-6560/ad229f.
10
Image Domain Multi-Material Decomposition Noise Suppression Through Basis Transformation and Selective Filtering.
IEEE J Biomed Health Inform. 2024 May;28(5):2891-2903. doi: 10.1109/JBHI.2023.3348135. Epub 2024 May 6.

引用本文的文献

2
Deep learning-based virtual noncalcium imaging in multiple myeloma using dual-energy CT.
Med Phys. 2022 Oct;49(10):6346-6358. doi: 10.1002/mp.15934. Epub 2022 Aug 28.
3
Image-domain Material Decomposition for Spectral CT using a Generalized Dictionary Learning.
IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):537-547. doi: 10.1109/trpms.2020.2997880. Epub 2020 May 26.
4
Deep-learning-based direct inversion for material decomposition.
Med Phys. 2020 Dec;47(12):6294-6309. doi: 10.1002/mp.14523. Epub 2020 Oct 30.
5
Low-dose spectral CT reconstruction using image gradient -norm and tensor dictionary.
Appl Math Model. 2018 Nov;63:538-557. doi: 10.1016/j.apm.2018.07.006. Epub 2018 Jul 21.
6
Block matching frame based material reconstruction for spectral CT.
Phys Med Biol. 2019 Dec 5;64(23):235011. doi: 10.1088/1361-6560/ab51db.
7
Spatial-Spectral Cube Matching Frame for Spectral CT Reconstruction.
Inverse Probl. 2018 Oct;34(10). doi: 10.1088/1361-6420/aad67b. Epub 2018 Aug 14.
8
Iterative spectral CT reconstruction based on low rank and average-image-incorporated BM3D.
Phys Med Biol. 2018 Aug 6;63(15):155021. doi: 10.1088/1361-6560/aad356.

本文引用的文献

1
Iterative reconstruction for dual energy CT with an average image-induced nonlocal means regularization.
Phys Med Biol. 2017 Jul 7;62(13):5556-5574. doi: 10.1088/1361-6560/aa7122. Epub 2017 May 4.
2
Penalized weighted least-squares approach for multienergy computed tomography image reconstruction via structure tensor total variation regularization.
Comput Med Imaging Graph. 2016 Oct;53:19-29. doi: 10.1016/j.compmedimag.2016.07.002. Epub 2016 Jul 19.
4
Spectral CT Image Restoration via an Average Image-Induced Nonlocal Means Filter.
IEEE Trans Biomed Eng. 2016 May;63(5):1044-1057. doi: 10.1109/TBME.2015.2476371. Epub 2015 Sep 3.
5
An extended algebraic reconstruction technique (E-ART) for dual spectral CT.
IEEE Trans Med Imaging. 2015 Mar;34(3):761-8. doi: 10.1109/TMI.2014.2373396. Epub 2014 Nov 24.
6
Iterative image-domain decomposition for dual-energy CT.
Med Phys. 2014 Apr;41(4):041901. doi: 10.1118/1.4866386.
7
Determination of the optimal energy level in spectral CT imaging for displaying abdominal vessels in pediatric patients.
Eur J Radiol. 2014 Mar;83(3):589-94. doi: 10.1016/j.ejrad.2013.10.016. Epub 2013 Oct 27.
8
Model-Based Iterative Reconstruction for Dual-Energy X-Ray CT Using a Joint Quadratic Likelihood Model.
IEEE Trans Med Imaging. 2014 Jan;33(1):117-34. doi: 10.1109/TMI.2013.2282370. Epub 2013 Sep 17.
9
Guided image filtering.
IEEE Trans Pattern Anal Mach Intell. 2013 Jun;35(6):1397-409. doi: 10.1109/TPAMI.2012.213.
10
Noise reduction with low dose CT data based on a modified ROF model.
Opt Express. 2012 Jul 30;20(16):17987-8004. doi: 10.1364/OE.20.017987.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验